

Office of Naval Research

Contract N00014-67-A-0298-0006

NR - 372 - 012

National Aeronautics and Space Administration

Grant NGR 22-007-068

THE

MATRIX ALGEBRA PROGRAM

A

CONVERSATIONAL LANGUAGE FOR

NUMERICAL MATRIX OPERATIONS -
PART II: REFERENCE MANUAL

BY

P. M. Newbold

Technical Report No. 562

~ ~ ~~

This tlocument has been approved for public
release and sale; its distribution is unlimited.

June 1968

The research reported in this document was made possible through
support extended the Division of Engineering and Applied Physics,
Harvard University by the 'U. S, Army Research Office, the U. S.
Air Force Office of Scientific Research and the U. S. Office of
Naval Research under the Joint Services Electronics Program by
Contracts N00014-67-A-0298-0006, 0005, and 0008 andby the National
Aeronautics and Space Administration under Grant NGR 22-007-068.

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

THE

MATRIX ALGEBRA PROGRAM

A

CONVERSATIONAL LANG

ERICA1 MATRIX OPERATIONS -

PART II: EFERENCE

BY

P. M. Newbold

Division of Engineering and Applied Physics

Harvard University, Cambridge, assachusetts
June 1968

CONTENTS

1. INTRODUCTION
Page

1

2. NOTATION

Flow Diagrams

Words
Indices and Tables

3. THE STORAGE TABLES O F MAP

4. BASIC OPERATION OF THE PROCESSOR
Flow Diagram 1

5. THE DETAILED PROCESSES OF EXECUTION

Form of U s e r Subroutines

System Subroutines
The Directive Subproc e s s or

Routines called by the Directive Subprocessor

Flow Diagrams 2-8

6. THE EXECUTIVE SUBPROCESSOR

Part I: Components not Involving Manipulation
of Matrices

Introduction to Floating-point Coding

Part 11: Components Involving the Manipulation
of Matrices

Flow Diagrams 9-35

7. COMPATIBILITY

8. CHANGING THE LIMITS ON STORAGE SPACE

APPENDIX A1

APPENDIX A2

6

13
17

18
18

19
19
23

32

39

39
64

69
106

137

139

141

143

INDEX OF COMMANDS 145

REFERENCES 147

1. ~NTRODUCTION

THIS MANUAL contains detailed information on the structure and

operating principles of the MATRIX ALGEBRA PROGRAM, abbre-

viated MAP.

description of i ts facilities a r e given in the MAP USER'S MANUAL

El]. It i s assumed that the reader is familiar with the USER'S
MANUAL, and also with the SDS 940 Time-sharing System Manuals.

Instructions for the use of the MAP language, and a

In particular, since the MAP processor i s written exclusively in the

SDS 940 Assembly Language ARPAS, the reader i s expected to know
ARPAS thoroughly.

After reading this manual it should be possible for the reader to insert

his own sections of coding into the MAP processor s o a s to extend the

facilities provided by the language.

2. NOTATION

IN GENERAL, throughout the manual, words and phrases printed in

capitals a r e to be considered as definitive terms relating to MAP

language, o r the MAP processor.

duced in the MAP USER'S MANUAL.

Many of the terms used a r e intro-

Numbers written in the decimal system have no subscripts. Numbers

written in the octal system a r e subscripted I'8'' and those in the binary

system, "2 I'.

- 1 -

Flow Diagrams

There a r e many flow diagrams illustrating the operation of sections

of the MAP processor. Notation in these is largely conventional or

self-explanatory. Points in the flow diagrams labelled thus:

correspond with symbolic locations in the processor possessing the

name substituted for **’* . Points labelled thus:

Y
a r e for reference only and have no counterpart in the processor

program.

lised calling sequence i s given, together with the contents of the

working registers A , B , and X at the times of entry and exit.

In flow diagrams representing subroutines, the genera-

The operation of the MAP processor is based on the cross-

referencing of various storage tables.

section is devoted to their notation in the manual.

The remainder of this

W o r d s

A WORD AS DEFINED here is more restricted in sense than is

usual.
unit of storage of data or information.

As far as the MAP processor is concerned, a WORD is a
Physically, i t is either a

-2-

location o r two adjacent locations in core storage, o r the image of

the location(s) on a disk file.

tional) word consisting of 24 bits, denoted by:
A location of storage is a (conven-

0 1 2 21 22 23
I
I I
I 1
I
1 I.

A WORD may o r may not be part of a TABLE; if so it is given an

INDEX number, and may be called a TABLE ENTRY. If not the

WORD i s given a symbolic name (which is the symbolic location of

the s tar t of the WORD). The contents of the WORD a re denoted by

the name of the WORD enclosed in braces.

EXAMPLE:
name of location: INDEX
contents of location: (INDEX}

A WORD may be used to store any one of three different kinds of
data. The WORD TYPE i s dependent on the kind of information
stored. It i s possible for WORDS of mixed TYPE to exist.

TYPE I A TYPE I WORD i s a one-location WORD in which
a n integer number i s stored in the form of octal digits.
Since each octal digit occupies three bits, the WORD

contains a number up to eight octal digits long.

digits a r e labelled 01,02 O B .

these digits may constitute several numbers

other TABLES. A TYPE I WORD i s denoted by:

These
Frequently

INDEXING

0, 0, 0, 0,

- 3 -

TYPE 11 A TYPE I1 WORD is a one-locatiop WORD in which

character codes a r e stored. Since each octal charac-
t e r code occupies eight bits, the WORP Contains three

character codes.

The two left-most bits of an alphanumeric character
code a r e both zeros. A TYPE 11 WORD i s denoted by:

These a r e labelled C1,C2, and C3.

TYPE I11 A TYPE I11 WORD i s a two-location WORD in which
a floating point decimal number is stored.
location of the WORD contains the most significant

part of the mantissa. The second location contains the
least significant part of the mantissa, and the exponent

These are labelled F1, F2, and E respectively.
whole WORD i s INDEXED a s a single entity. The

WORD i s denoted by:

The f i rs t

The

0 1 5 23

24

Indices and Tables

A TABLE IS A sequence of WORDS occupying adjacent locations in
core storage, o r their images on a disk file.

TABLE has an INDEX number denoting i ts position in the TABLE.

Each WORD of the

A more detailed explanation of the floating point arithmetic system
of the SDS 940 is to be found in [Z] , and in the SDS 940 TECHNICAL
MANUAL [3].

1 .

-4-

The value of the INDEX may be either positive or negative.
INDEXING of a TABLE can run either forwards o r backwards,

usually starting from zero: A TABLE contains WORDS of one

TYPE only, unless the WORDS themselves a r e of a mixed TYPE.
A WORD with INDEX number n is denoted by:

The

In the case of TYPES I 8t 11 WORDS the INDEXING of the TABLE

coincides with the natural location indexing of the TABLE locations.

The name of the TABLE is the symbolic label given to the zero

location of the TABLE in the processor program (or equivalently,

the WORD with INDEX zero).

th

In the case of TYPE 111 WORDS the INDEXING does not coincide

with the natural location indexing of the TABLE 1.ocations. The

natural index of the first location of a WORD in the TABLE is ob-
tained by doubling the INDEX number of the WORD.

index of the second location of the WORD is obtained by adding one

to the previous result. The name of the TABLE is the symbolic

label given to the zeroth location of the TABLE in the processor
program (or equivalently, the first location of the WORD with INDEX

zero).

The natural

The contents of a WORD of a TABLE a r e denoted by the name of the
TABLE followed by a comma and the INDEX number of the WORD,

all enclosed in braces.

EXAMPLE:
name of location containing INDEX number: INDEX

contents of location: {INDEX}

INDEXED WORD in ICOM-TABLE : ICOM, {INDEX}

contents of INDEXED WORD: { ICOM, {INDEX} 1

- 5-

Most of the TABLES a r e filled with information as MAP language

is being used. TABLES are not always filled starting with INDEX

zero. The actual starting point is called the ORIGIN O F STORAGE
of the TABLE. A TABLE, its INDEXING, and its ORIGIN OF

STORAGE are denoted by:

I
1 I

I
I

I
I

I I
I

(name)

(T Y P E) I
c 1 I

1 -

(name)

I (T Y P E) I

I-J

Unused parts of TABLES are shown shaded, and contain zeros.

3. THE STORAGE TABLES OF M A P

THE OPERATION of MAP depends on the storage of data and

information in eight major TABLES. By cross-referencing from

TABLE to TABLE, MAP decides upon the right course of action

at each stage in execution.

is explained in turn.

The TYPE and purpose of each TABLE

IC OM - TAB LE

The ICOM-TABLE stores the names of all MAP
language COMMANDS. The two left-most bits of

- 6 -

C
the number of ARGUMENTS appropriate to the

COMMAND whose name is stored in that WORD:

(bits 16 and 17) of each WORD are used to store 3

$az - no ARGUMENTS
$lz - one ARGUMENT

- two ARGUMENTS

PLACE - TAB LE

'6

TYPC 2

01

The PLACE-TABLE stores the locations in the

MAP processor to which execution is directed for

carrying out the operation represented by the

COMMAND named in the corresponding position of

the ICOM-TABLE.

location for the COMMAND { ICOM, - 1 -i) .
{PLACE, i} is the transfer

Since the contents of both the ICOM- and PLACE-TABLES a r e

permanent, no ORIGINS O F STORAGE a r e specified for them.

All the following TABLES have specified ORIGINS.

S--TABLE

I&-

- 7-

The S-TABLE stores the numerical values of the
VARIABLES that the user defines. The TABLE

is divided into contiguous BLOCKS of different

lengths.
of storage, which is of just sufficient length to accom-

modate the values of all the elements of the VARIABLE

(assuming that generally the VARIABLE represents a

matrix).

stored row by row. The BLOCKS storing the values
of user-defined VARIABLES commence a t INDEX

number la1 , and work forward.
VARIABLE 00 is assigned a BLOCK of 1448 WORDS

starting a t the ORIGIN. This BLOCK is of constant
length in spite of the fact that 00 can change i ts row

and column dimensions.

Each VARIABLE i s assigned one BLOCK

The values of the matrix represented a r e

The standard output.

C TAB -TABLE

LQRlOlbll

The CTAB-TABLE stores the COMMENTS attached
to INDIRECT STATEMENTS of a PROGRAM by the

user. The characters of the COMMENTS are stored
in a string, three to a WORD, with the ORIGIN a t C1

of the zeroth WORD. This is the only TABLE which

is INDEXED by the number of characters from the
ORIGIN, C1 of the zeroth WORD is the zeroth charac-

te r . All COMMENTS are stored end to end with no

empty character positions.

-8 -

ISYMB-TABLE

The ISYMB-TABLE stores the VARIABLE names

that the user defines. C1 of each WORD is blank.
The standard output VARIABLE name 00 is

permanently stored at the ORIGIN. User-defined

names f i l l up the TABLE from INDEX number -59
forwards.

IDIM - TABLE

Each WORD in the DIM-TABLE contains numerical

data associated with the VARIABLE named in the

WORD of the same INDEX in the ISYMB-TABLF.

Each WORD is in three parts, each containing an octal

number.

O1 to O4 contain the INDEX of the last WORD in

the BLOCK of storage in the S-TABLE
assigned to the storing of the values of the

corresponding VARIABLE named in the

ISYMB-TABLE. This INDEX will be called

the BLOCK INDEX for the VARIABLE.

-9 -

O5 to O6 contain the row dimension of the cor re-
sponding VARIABLE named in the

ISY MB - TABLE.

0 to Os contain the column dimension of the 7
corresponding VARIABLE named in the

ISYMB-TABLE.

The numerical data for the standard output VARIABLE

00 is permanently stored at the ORIGIN.

f i rs t use of MAP language, 00 is a 18 by 18 matrix.

The INDEX of the last WORD in the BLOCK assigned
to 00 in the S-TABLE is 1448. Hence {IDLM,-6$] =

1441 21 Z 8 .

Before the

To locate the WORD in the S-TABLE containing the
value of the f i rs t element of the VARIABLE whose

name is {ISYMB,i}, MAP unloads O1 to O4

{IDLM,i-l}, and adds one to the result.
desired INDEX.
tion for the standard output VARIABLE, O1 to O4

{IDLM, -61) are set to zero, representing the INDEX
in the S-TABLE of the first WORD of the BLOCK
assigned to 00, minus one.

This i s the

To preserve the uniformity of opera-

The BLOCKS of the S-TABLE a r e assigned in the
same order as their respective VARIABLE names in

the ISYMB-TABLE.

-10-

INS TR - TAB LE

The INSTR-TABLE is a TABLE of WORDS of mixed
TYPE storing coded versions of the STATEMENTS

that the user types in. DIRECT STATEMENTS are

always stored i n the zeroth WORD. When the user

creates a PROGRAM of INDIRECT STATEMENTS,

the STATEMENTS are stored starting at the ORIGIN

and working forwards. Each STATEMENT is coded

into between two and six octal numbers.

and three of these a r e stored in the INSTR-TABLE.

Between one

O7 to Os contain the two's complement of the INDEX

of the WORD in the ICOM-TABLE con-
taining the same COMMAND name as the

STATEMENT.

O3 to O6 contain the coded versions of the ARGUMENTS

of the STATEMENT. If the STATEMENT

has no ARGUMENTS, O3 to O6 a r e zero.
If the STATEMENT has one ARGUMENT,
0 to O4 are zero, and O5 to 0 contain

the coded ARGUMENT. If the STATEMENT

has two ARGUMENTS, O3 to O4 contain

the coded first ARGUMENT, and O5 to O6

contain the coded second ARGUMENT.

3 6

-11-

Depending on the type of the ARGUMENT

the codes may be interpreted in two ways.
If the ARGUMENT is LABEL-type, each

code is the value of the LABEL itself

converted to the octal system.
ARGUMENT i s VARIABLE-type, each
code is the two's complement of the INDEX

of the WORD in the ISYMB-TABLE con-
taining the same VARLABLE name as the

ARGUMENT.

If the

P TR - TAB LE

Each WORD of the PTR-TABLE contains the remaining

two code numbers for the STATEMENT partially coded

into the WORD of the same INDEX in the INSTR-TABLE.

O5 to O6 contain zero i f the STATEMENT i s DIRECT,

or, the LABEL of the STATEMENT con-

verted to the octal system i f i t is INDIRECT.

O7 to Os contain the number of ARGUMENTS of the

STATEMENT i f the ARGUMENTS a r e
VARIABLE-type, o r zero i f they a re LABEL-

type.
of the STATEMENT.

This number i s called the CHECKNUMBER

-12-

O1 to O4 contain the INDEX in the CTAB-TABLE

of the first character code of the COMMENT

attached to the STATEMENT if the latter i s
INDIRECT and a COMMENT for i t exists,

o r zero otherwise.

In the next section an overall outline of the operation of the MAP pro-
cessor i s given.

4. BASIC ATION OF THE PR

THE BASIC OPERATION of MAP depends on the coding of DIRECT

STATEMENTS and the execution of sequences of DIRECT or INDIRECT

STATEMENTS. All operations, including for example, the creation of

a VARIABLE LIST o r a PROGRAM a r e carried out a s phases in the

execution of STATEMENTS.

The section of the MAP processor devoted to these fundamental

operations is called the DIRECTIVE SUBPROCESSOR. It consists
of a loop of complex form which i s iterated every time one STATE-

MENT is processed. The DIRECTIVE SUBPROCESSOR is shown

in Flow Diagram 1. Each phase of its loop will be examined in turn.

On first entry into the MAP processor, the title of the processor i s

printed out (a). Initialization of the processor follows (b). This

process wil l be discussed later.

counter 'INDEX' to zero and asks the user to type in a DIRECT
STATEMENT (d).

as {INSTR,$} and .(PTR,$} (e).
a r e given later; the contents of the INSTR- and PTR-TABLES on

completion of the process are described in the previous section.

Next the processor sets an INDEX

The STATEMENT is input, coded, and stored

Details of the coding process itself

- 1 3 -

If the coding process i s unsuccessful because of a user e r r o r (f) ,

an e r r o r message is printed out (g), and the processor asks for a

new DIRECT STATEMENT (d).

If the coding process i s successful, the MAP processor moves on

to the next phase in execution (h). The
processor therefore unloads {INSTR, pl) and {PTR, 8).
tents give the following information:

At this point {INDEX} =$.
The con-

INSTR-TABLE

(I) The INDEX in the ICOM-TABLE of the COMMAND
of the coded STATEMENTj and either

(11) the octal equivalents of the LABEL-type ARGUMENTS
of the coded STATEMENT; o r

(111) the INDICES in the ISYMB-TABLE of the names of

the VARIABLE-type ARGUMENTS of the coded
STATEMENT.

PTR - TABLE

(IV) The CHECKNUMBER of the STATEMENT.

Knowing (I) the MAP processor obtains the location in the processor
program to which control is to be transferred for execution of the

COMMAND, from the corresponding entry of the PLACE-TABLE

(see the previous section).
WORD, so that MAP proceeds to the next phase (i), effecting the

transfer of control and executing the coded DIRECT STATEMENT

(j). This phase utilizes (11) through (IV) above.

{INSTR, $3 cannot have been an empty

On return, i f execution was deleted because of an irremediable e r ro r

(k), an e r r o r message is printed (g) and a new DIRECT STATEMENT
is asked for.

-14-

If execution is successful, {INDEX} is incremented by one (1) .

Two possibilities now ar i se . If the STATEMENT just executed
was any STATEMENT apart from a DIRECT 'BRANCH'

STATEMENT, then at (m) {INDEX} > $.
'NO' branch, returning to (d) t o ask for a new DIRECT STATEMENT.

MAP thus chooses the

On the other hand, i f the STATEMENT just executed was a DIRECT

'BRANCH' STATEMENT (the user presumably wishing to cause

execution of a stored PROGRAM), then at (m) (INDEX) < fd. The
actual value will be the negative of the INDEX of the WORD in the

PTR-TABLE containing the coded LABEL which appeared as the

ARGUMENT of the DIRECT 'BRANCH' STATEMENT. The 'YES'

branch is taken at (m), and unloading of { INSTR, {INDEX}} and

{ PTR, {INDEX} } foiiows.

Thus execution of the stored PROGRAM star t s with execution of the

INDIRECT STATEMENT specified by the user in the DIRECT

'BRANCH' STATEMENT. This time during the unloading process

(h), because the STATEMENT is INDIRECT, in addition to (I)

through (IV) above,

PTR - TABLE

(VI

the following information is given:

The INDEX in the CTAB-TABLE of the
COMMENT attached to the INDIRECT
STATEMENT, i f present; and

the octal equivalent of the LABEL of the

INDIRECT STATEMENT.

If the STATEMENT has a COMMENT, it is printed out, and MAP

then proceeds as before by obtaining the transfer location for the
currently processed STATEMENT from the PLACE-TABLE.
this stage also an empty WORD cannot be present (i), so MAP

executes the INDIRECT STATEMENT (j).

At

-1 5-

The loop (h)(i)(j)(k)(i)(m) is cycled repeatedly, executing the INDIRECT

STATEMENTS of the PROGRAM in their LOGICAL SEQUENCE. In

the absence of any flow-changing STATEMENTS in the PROGRAM,

{INDEX} increase by one at each iteration round the loop.

ceases when one of the following four events takes place.

Iteration

(I) The MAP processor detects at (i) an empty WORD in the INSTR-

TABLE: it considers the PROGRAM to have been

completely executed normally, and returns to (d) to
ask for a new DIRECT STATEMENT.

(11) The MAP processor detects at (m) that {INDEX} a re no longer
negative.

maximal length PROGRAM has just been completed

normally. Again MAP returns to (d) to ask for a

new DIRECT STATEMENT.

This can only happen i f execution of a

(111) The MAP processor detects a t (k) an EXECUTION ERROR
An e r r o r message i s given and deletes execution.

(g) and MAP returns to (d) to ask for a new DIRECT

STATEMENT.

2
(IV) The user presses the 'ESCAPE' key. A software interrupt i s

activated, and MAP i s directed to the recovery routine

(c) and thence to re-initialize MAP (b).

This completes the discussion of the DIRECTIVE SUBPROCESSOR of

MAP.

The software interrupt system of the SDS 940 is described on p. 8
of the SDS 940 TECHNICAL MANUAL [3].

-1 6-

STATE M E N T (e) iTJ
MESSAGE
E-R I n

i

I 'NO'
1

60 k r execution. af COMNAN

I

Flow Diagram 1. The DIRECTIVE SUBPROCESSOR.

5. THE DETAILED PR CESSES OF EXECUTION

THIS SECTION comprises a set of notes designed to supplement
the information given in the Flow Diagrams 2 - 8. The reader will

also find it useful to refer to a listing of the MAP processor, and

to the MAP USER'S MANUAL [l].

There a r e some general properties of the structure of the processor

program that it is useful to bear in mind.

Form of User Subroutines

SUBROUTINES ARE constructed in either of two different ways. If

the subroutine has need of only one transmitted parameter apart

from the contents of the working registers, then the POP form is

employed. The method of call is such that the POP may be used

exactly like a machine instruction.

For subroutines requiring more transmitted parameters, o r of

relatively high complexity, the BRM - BRR type of linkage i s em-

ployed.
BRM for brevity.

A subroutine of this type will from now on be called a

3 . See pages 17-18 of the SDS 940 COMPUTER REFERENCE

4* See pages 25-26 of the SDS 940 COMPUTER REFERENCE

MANUAL [4], and page 13 of the SDS 940 TAP MANUAL [5].

MANUAL [4].

-18-

System Subroutines

There a r e a large number of system subroutines available on the

SDS 940. These are intended to ca r ry out basic operations often

required by an ARPAS programmer, (such as input/output opera-

tions) to make programming a simpler process.

two forms:
Again there a r e

(I) the SYSPOP which is exactly like a POP,
except that it is defined within the system; 5

(11) the BRS, which has a single call instruction,

and uses only the working registers to trans-

mit parameters. 6

For convenience, a list of the BRS's and SYSPOPS used in the MAP

processor is given in Appendix Al .

The Directive Subprocessor

THE OPERATION O F the DIRECTIVE SUBPROCESSOR of MAP

has already been explained in general terms in the preceding section.
More details are given here, and the explanation proceeds more from

a programming standpoint than before.

ployed will be described in following subsections of the manual.

The user subroutines em-

The flowchart of the SUBPROCESSOR i s shown again in Flow Diagram 2.

On first entry into the MAP processor at the point H W T @ ,
message MS1 is printed out: 7

5, 6' See the SDS 940 TECHNICAL MANUAL [3].

7. A list of all the messages used is given in Appendix A2.

-19-

MATRIX MANIPULATOR (1 1 g-3) MAY 1968

The 'ESCAPE' interrupt is armed and as a precautionary measure,

a BRS closing all disk files is executed.
W", "space", and "bell" a r e output to the teletype, and (INDEX}

set to zero.

The three characters

The BRM

STATEMENT.

a mistake the 'BAD' exit is taken, and execution is directed to point

Ha) . Otherwise the 'GOOD' exit is taken.

{INSTR, $} and {PTR, $} constitute the coded STATEMENT.
point Hm) the MAP processor enters a loop which i s cycled

when either DIRECT or INDIRECT STATEMENTS a r e to be executed.

The WORDS in the INSTR- and PTR-TABLES containing the coded
STATEMENT to be executed are INDEXED by {INDEX}.

for DIRECT STATEMENTS.

'INPUT' i s next executed: this handles input of a DIRECT

If the user types There a r e two exits from the BRM.

At this point
At

{INDEX} = jd

First, the CHECKNUMBER 0708 {PTR, {INDEX)} is unloaded, and
set into a temporary storage location T t 3 . Next the BRM 'WDS' is

executed. This prints the COMMENT attached to the STATEMENT,

i f there i s one, on the teletype.

A test is now carried out to determine whether {INSTR, {INDEX}} = (d.
A zero value implies that the MAP processor has already executed

all the INDIRECT STATEMENTS of a PROGRAM in their LOGICAL

SEQUENCE, and no STATEMENT exists in the WORD tested. If the

contents of the WORD a r e zero, execution returns to point H-1 .
If {INSTR, (INDEX}} # $ the processor unloads and stores the res t of
the data for the current STATEMENT in the following way:

8 * Files a r e identified by a logical index number. $ and 1 stand for
teletype input o r output, and hence no disk files exist with these
numbers, and closure does not occur.

-20-

{TI

{T t l}

{Tt2}

set to 0304 {INSTR, {INDEX}}

set to 0506 {INSTR, {INDEX}}

set to 0708 {INSTR, {INDEX}}

After unloading, {T}, { T t l } are the coded ARGUMENTS of the

STATEMENT, and {Tt2} are the coded COMMAND.

Control of execution is now transferred to that section of the pro-

ces sor executing the specified COMMAND. The transfer location

is given by {PLACE, { Tt2} -1).

is given by {ICOM, -{ Tt2}}.
locations T , T t 1 , T t 2 , T t 3 transmits identifying information

during the transfer.

The name of the specified COMMAND
The vector of temporary storage

Execution of the STATEMENT now follows. Description of this is

deferred until later sections. If an e r ro r is detected during execu-

tion {ERR} are set to some non-zero value identifying the ERROR
MESSAGE.

on completion.

Control of execution is transferred to point +-(-)

The MAP processor now makes several tests.

determines whether {ERR} = $.
non-zero, implying that an e r r o r arose during the execution of the

STATEMENT.

whether {INDEX} < p(. If this i s true, then the STATEMENT in

which the e r ro r occurred was INDIRECT : the processor there-

The first test

First suppose that the value is

The processor next makes a test determining

fore outputs to the teletype the message MS6 :

STOP IN STATEMENT

The LABEL of the incorrectly executed STATEMENT is unloaded
from 0506 (PTR, {INDEX}), and printed by the BRM 'PIC'.

the user is provided with information on where execution failed in

his PROGRAM.

Thus

-21 -

For all values of (INDEX} execution is now directed to the ERROR
MESSAGE subroutine BRM 'ERl'. The ERROR MESSAGE cor-

responding to the value of {ERR} is printed on the teletype, and

{ERR} reset to zero. Execution is then directed back to the point
.

Alternately, suppose that {ERR} = $, implying that no e r r o r occurred;

then the processor increments {INDEX} by one.
is next carried out.

INDIRECT STATEMENTS to be executed, and execution is directed

to the point Hm]. Otherwise execution i s directed to the point

A test on {INDEX}
If {INDEX} < $, then there may still be more

+((Alpl).

The condition {INDEX} 3 $ could have arisen in two ways.

{INDEX) = $ this implies that the processor has just successfully
completed execution of a PROGRAM which fully occupies the INSTR-

and PTR-TABLES.

just executed was DIRECT (but not a flow-changing STATEMENT).

If

If {INDEX) > $ this implies that the STATEMENT

This completes the description of the actual loop itself.
point remains to be explained in connection with Flow Diagram 2 .

at any point the user presses the 'ESCAPE' key the presence of the
interrupt mentioned earlier overrides the normal action of the MAP
processor, and execution is directed to the BRM 'ESC'. This

routine outputs to the teletype a carriage return and line feed, and
directs the processor to restart execution of the basic loop at point

One further

If

+--El*

In the following subsections the operation of the subroutines involved
in the DIRECTIVE SUBPROCESSOR is explained.

-22-

Routines called by the Directive Subprocessor

SEVERAL SUBROUTINES, all of the BRM type are described in

this subsection.

BRM 'WDS' (Flow Diagram 3.)

The BRM
the teletype COMMENTS attached to INDIRECT

STATEMENTS.
INDEX in the PTR-TABLE of the WORD con-

taining the starting INDEX of the required COMMENT
in the CTAB-TABLE.

The calling sequence is:

'WDS' is a routine for printing out via

On entry {X} is the value of the

9 (A} and {B} are garbage.

BRM WDS
[return location]

The operation of the routine is as follows.

01-04 {PTR, {X}} a r e unloaded, giving the INDEX

of the zeroth character of the desired COMMENT.

This INDEX number is tested, and i f found to be

zero, implying that no COMMENT exists for the

STATEMENT coded into the WORD in the PTR-
TABLE examined, then the exit from the BRM is

taken directly.

First

If the INDEX number is non-zero, then a COMMENT
th

exists. The absolute character location of the zero
character is calculated, and the characters a r e then

9' The working regis ters of the SDS 940 are called the A , B , and
X registers. X is the index register.

-23-

retrieved from the CTAB-TABLE and output to the

teletype one by one until a carriage return character
10 is encountered.

A line feed character is then output to the teletype,

and the exit from the BRM taken.

the same as at entry, while {A) and {B) are garbage.

At exit {X} a r e

BRM 'PIC' (Flow Diagram 4.)

The BRM 'PIC' is a routine which converts an octal

number to its character code representation, and
prints the result via the teletype.

the two-digit octal number to be converted to its

character codes and printed.
{X} a r e unaffected by the BRM.

is:

On entry {A} i s

{B} a r e garbage, and
The calling sequence

BRM PIC
[return location]

The operation of the routine is as follows.

a r e divided by 12

a r e then the left and right digits respectively of the
original number.

to their character code form and output to the teletype.

The exit from the BRM is then taken.

F i r s t {A}

The quotient and the remainder 8'

In turn, these a r e each converted

At exit (A} and {B) are garbage.

lo. The retrieval of characters from a TABLE o r 'string' is one of
the processes for which special provision is made in the SDS 940
system. For further information on the 'string processing' system,
see the STRING PROCESSING REFERENCE MANUAL [SI, and
the SDS 940 TECHNICAL MANUAL [3].

-24-

BRM 'ER1' (Flow Diagram 5 .)

The BRM 'ERl' is a routine which prints out ERROR

MESSAGES, and controls the return of execution to a

specified location in the processor.

{B} and {X} a re garbage.

ERROR MESSAGE reference number. The calling
sequence is :

At entry {A} ,
{ERR} constitute an

BRM ER1
ZRO [address of return location]

The operation of the routine is as follows.

location of the ERROR MESSAGE corresponding to

the value of {ERR} is calculated.

printed via the teletype using a BRS 34.

reset to zero, and the return location obtained.

Lastly the exit from the BRM is taken.

{B} and {X} a r e garbage.

F i r s t the

The message is

{ERR} a r e

At exit {A},

BRM 'INPUT' (Flow Diagram 6.)

The BRM 'INPUT' i s a routine for executing the input

of STATEMENTS from the teletype, for checking their

acceptability, and for coding them into the INSTR- and

PTR-TABLES.

STATEMENTS, and all parts of INDIRECT STATEMENTS

following the colon.
garbage. The calling sequence is:

It handles the input of DIRECT

On entry {A} , {B} and {X} a r e

-25-

BRM INPUT
[GOOD return location]
ZRO [address of BAD return location]
ZRO [address of location containing INDEX

number in INSTR- and PTR-TABLES]

The operation of the routine is as follows.

the address of the BAD return location is stored in

case of i ts use by the BRM 'ERl'. The contents

of two locations used a s ARGUMENT and
CHECKNUMBER counters a r e initialized to zero.

{X} a r e set equal to the value of the INDEX of the
WORDS in the INSTR- and PTR-TABLES in which

the coded STATEMENT is to be put. {INSTR, {X}}

a r e set equal to zero.

On entry

Next, the processor checks to see i f an e r r o r has
already occurred.

the 'NO' branch is taken to point Hm) .
(ERR) = $ the 'YES' branch is taken to point MINI) .
This point is the s ta r t of a loop which inputs charac-
t e r s three at a time from the teletype into one WORD,

and processes them as an entity.
this loop is now examined. First, the three charac-

t e r s of the STATEMENT a r e input from the teletype

into one WORD. If the third character is a comma,

then this WORD contains an ARGUMENT;, if not, a
COMMAND.

If this is true, so that {ERR} # 8,
If

The operation of

Suppose f i r s t that the WORD contains an ARGUMENT
of the STATEMENT. If the ARGUMENT counter has
the value 2 , showing that two ARGUMENTS have

already been accepted, an e r r o r condition ar ises , and

a 'YES' branch is taken to the point HE) . *

-26-

Otherwise the 'NO' branch is taken, and the BRM 'IPC'

is next executed. This routine t r ies to code the

is successful, exec

If the coding is unsucce
is VARIABLE-type, o r an e r r o r in input has taken

place.

The BRM

ARGUMENT in the ISYMB-TABLE. (If the ARGUMENT

of the STATEMENT is VARIABLE-type and valid, it

wil l have already been stored in the ISYMB-TABLE by

a 'VARIABLES' COMMAND). If no such ARGUMENT

exists, it is certain that an e r r o r has occurred.

a r e set equal to 2, denoting an ERROR MESSAGE

reference number, and execution proceeds to point

m.
TABLE, the two's complement of i ts INDEX in the

TABLE i s kept; the CHECKNUMBER i s incremented

by one, and execution proceeds to point Hs).

'LOOK' is executed, trying to locate the

(ERR}

If the ARGUMENT is found in the ISYMB-

At this point the coded ARGUMENT is placed in posi-

tion in INSTR, {X) . The ARGUMENT counter i s
incremented by one, and execution i s directed back

to point

t e r s of the STATEMENT.

for processing the next three charac-

Suppose now that when the characters a r e processed,

they constitute the COMMAND of the STATEMENT.

The value of the ARGUMENT counter is merged into

nd 1 7 of the WORD containing the COMMAND.

A BRM 'LOOK' is executed looking up the COMMAND e

in the ICOM-TABLE. If it is found, the two's comple-

ment of its INDEX in the TABLE is loaded in position

-27-

in INSTR, {XI .
into position in PTR, (X} .

The CHECKNUMBER i s loaded

Execution then proceeds
to point +(K).

If no such COMMAND i s found in the ICOM-TABLE,

execution is directed to point (&-(=) where

{ERR} a r e set equal to 9.
to point +(X] .

Execution then proceeds

At this point, characters a r e input one a t a time and

thrown away, until the f i rs t appearance of a carriage

return character. If the ARGUMENTS and the

COMMAND were successfully coded, the characters

input will be those of the COMMAND after the f i rs t

three. If an e r r o r a rose at some point, the charac-
t e r s input wil l in addition include those constituting

all the STATEMENT after the occurrence of the e r ro r .

On the appearance of a carriage return, a line feed

character is output to the teletype. An e r r o r check

is made, and if none occurred then the 'GOOD' exit

from the BRM is taken.
BRM

MESSAGE. The 'BAD' exit is then taken from the

BRM 'INPUT' to the point specified at the start of

the routine.

If an e r r o r did occur, a

'ER1' is executed to print out an ERROR

At either exit {A}, (B} and {X) a r e garbage.

The two following routines a r e called during the execution of the

BRM 'INPUT'.

-28 -

BRM 'LOOK' (Flow Diagram 7.)

The BRM

WORDS or parts of WORDS in a TABLE for a

match with the WORD or part of WORD tested.

The BRM is used in many parts of the processor

to locate the names of VARIABLES, COMMANDS,

and so on.

with a TABLE entry.
The calling sequence is:

'LOOK' is a routine for examining the

At entry (A} is the WORD to be matched

{B} and {X} a re garbage.

BRM LOOK
ZRO [mask]
ZRO [INDEX of TABLE
ZRO [name of TABLE]
[BAD return location]
[GOOD return location]

origin]

The operation of the routine is a s follows.

the arguments of the BRM a r e obtained the absolute

location of the zeroth WORD of the TABLE, the

mask through which the match is to be taken, and

the INDEX of the ORIGIN of the TABLE. Execution

From

is then at point Mx].

The WORD in the A register is now compared with

each WORD in the specified TABLE appropriately
masked, starting at the ORIGIN, and stopping at the

first match o r after the zeroth WORD has been reached.

If a match occurred, then the INDEX of the WORD

where the match occurred i s retained, and the 'GOOD'

exit from the BRM taken.

'BAD' exit from the BRM is taken.

If no match occurred, the

-29-

At a 'BAD' exit {A} are as at entry; and {B} and

{X} are garbage. At a 'GOOD' exit {A} is the

INDEX of the matched WORD; and {B} and {X}
a r e garbage.

BRM 'IPC' (Flow Diagram 8.)

The BRM 'IPC' is a routine which tes ts an

ARGUMENT of a STATEMENT, and if i t is LABEL-

type, converts the character codes of the ARGUMENT
to a two-digit octal number. At entry {A}, {B} and

{X} a r e garbage.
be tested and converted.

{T} constitute the ARGUMENT to

The calling sequence is :

BRM IPC
 EXIT^ return location]
 EXIT^ return location]

The operation of the routine is as follows. F i r s t a
location storing the conversion result i s initialized

to zero.

a t point m. The current result i s multiplied
by 12 The next leftmost character of the WORD

to be converted is selected, and converted to a n octal

number. If the number is between $ and 11, then the

character converted was numeric, and the octal num-

ber is added into the result. If the number is outside

the above range, then the character code was non-

numeric and the ARGUMENT was not LABEL-type.

EXIT1 is taken from the BRM.

Execution then moves to the s ta r t of a loop

8'

If conversion continues another test is next made.
fewer than two characters have been processed,

If

-30-

execution returns to point H-1 and the loop

is recycled.
the final result has been obtained.

between 1 and 6 3 inclusive, it constitutes a valid

LABEL. EXIT2 is taken from the BRM. If the

value is outside this range, the LABEL is invalid,
and EXIT1 is taken from the BRM.

If two characters have been processed,

If i ts value is

At EXIT1 {A}, {B) and {X) a r e garbage; at

EXIT2 {A} constitutes the coded LABEL-type
ARGUMENT, and {B) and {X} a r e garbage.

This completes the detailed discussion of the operation of the DIRECTIVE

SUBPROCESSOR.

EXECUTIVE SUBPROCESSOR components wil l be discussed. These
components correspond one for one with the COMMANDS available

in MAP language, and car ry out their execution.

In the following sections the operation of the

- 3 1 -

b

Now Diagram 2. Detai led flowchart of DIRECTIVE SUBPROCESSOR.

'NO'

CALL SEQUENCE :

BRM WOS
[retu r n tow t ion]

AT ENTRY:

CAI ,CBl garbage
f x j value of INDEX in

PTR - TABLE

AT EXIT:

Flow Diagram 3 . Flowchart of BRM 'WDS' for printing the
COMMENT at tached to dn INDIRECT
STATEMENT.

EXlT

CALL SEQUENCE :

BRM PIC
[return rocation]

AT ENTRY:

CAf number for conversion
fX] not used
{B] gdrbage

Flow Diagram 4 . Flowchart of BRM 'PIC' for cohversion
and output o f dn octal number.

CALL SEQUENCE:

BRM ER1
ZRO [&dress of return

bcation] .

AT ENTRY:

EA3,fBl,Cx3 garbage
fERR) ERROR MESSAGE

reference number
AT EXIT:

Flow Didgram 5 . Flowchart of BRM k R 1 ' f o r print ing out
ERROR MESSAGES.

INPUT)

CALL SEQUENCE:

BRM INPUT
[ZGOOD return Iocation)
ZRO bddr. BAD return loc?]
ZRO [dddr. INDEX location]

AT ENTRY:

CA3,EB3, [X 3 gar bag e

(GOODEXIT)
Flow Didgram 6 . Flowchart o f BRM 'INPUT' for input and

coding of d STATEMENT.

CALL SEQUENCE:

(BAD) INDEX U

7'7Wf-E Of

J

I I AT ENTRY:

BRM LOOK
ZRO [masd
ZRO [INDEX of TABLE ORIGIN]
ZRO [natne of TABLE]
[BAD return locdtiod
[GOOD re tu rn Iocdfion]

(G-) CAI WORD t o be matched
, €X j gd r bage

AT EXIT:

EA] INDEX of matching WORD,
if one ex is ts

iB3 ,w garbage

Flow Diagram 7. Flowchart of BRM'LOOK' for matching d
WORD wi th d TABLE e n t r y ,

(7)
CALL SEQUENCE :

BRM IPC
[BAD return locatiorJ
[GOOD r e t u r n location]
.

AT ENTRY:

fA1,CBLIXl garbage
{Tj word to be converted

AT EXIT:

CAJ converted word o r
garbage

Cf%fx3 gdrbage

Flow Diagram 8 . Flowchart of BRM 'IPC' for tesiing and
converting d LABEL-t\jpe ARGUMENT t o
dn octal number.

6. THE EXECUTIVE SUBPROCESSOR

THE EXECUTIVE SUBPROCESSOR compris

of the MAP processor dealing with the ex

STATEMENTS. Control of entry into any of the components is

held by the DIRECTIVE SUBPROCESSOR whose operation has

been described in the previous sections of this manual.
ponent of the EXECUTIVE SUBPROCESSOR corresponds to a MAP

language COMMAND. There exist groups of components which are

almost entirely independent of each other, except in so far a s they

may call the same subroutines.

Each com-

Discussion of the operation of the component groups is divided into

two parts. Part I concerns the operation of those components not
involving the manipulation of MAP matrices and scalars. Pa r t I1
concerns all those components which do involve such manipulation.

This classification is unrelated to any classification of COMMANDS
to be found in the USER'S MANUAL, and is purely for descriptive

convenience.

Part I: C o ~ ~ o n ~ n t s not involving

EACH INDEPENDENT COMPONENT or component group will be

described in turn, followed by the subroutines which they call.

Each description will be titled with the COMMAND name o r names.

Flowcharts of the components wil l be found in Flow Diagrams 9-21.

VARiables (Flow Diagram 9.)

'VARiables' is a zero-ARGUMENT COMMAND for

adding new VARIABLE

VARIABLES. At entry

names to the LIST of

(LIST} constitute the INDEX

-39-

of the WORDS in the ISYMB- and DIM-TABLES
last filled. On first use of a 'VARiables' COMMAND,

{LIST} = -6$.

The operation of the COMMAND is a s follows.
F i r s t a check is made on {LIST} to see if the

ISYMB- and DIM-TABLES have already been com-

pletely filled, implied by {LIST} 3 -1 .

If so, a 'NO' branch i s taken; the B register is

loaded with an ERROR MESSAGE reference num-

ber, and execution directed to point --m in the
'APPend' component for completion of the e r r o r

return.

If the TABLES a re still only partially filled, the

'YES' branch is taken, and a BRM

This routine inputs a character from the teletype.

If it is an asterisk denoting that the use of the
'VARiables COMMAND has been completed, exe-
cution is returned to point --B in the DIRECTIVE

SUBPROCESSOR via EXIT1 from the BRM. If the
character is not an asterisk it i s assumed that the

user i s typing another VARLABLE LIST entry.
Two more characters a r e input to complete a whole

WORD, and EXIT2 is taken from the BRM .

'STAR' executed.

The processor now has in i ts possession the first

three characters of the new VARIABLE LIST entry

being typed in by the user. The first two characters
should be the name of the new VARIABLE, and the

last character either a carriage return if the

VARLABLE is scalar, o r l t = I 1 i f i t is a matrix.

-40 -

Next the VARIABLE name is checked to see if i t

starts with an alphabetic

The processor now executes a BRM 'LOOK' to

find out i f a VARIABLE of the same name has

previously been stored in the ISYMB-TABLE .
If the result is positive, the processor sets
(ERR) = 5 . If the result is negative, MAP ac-

cepts the new VARIABLE name.

are set equal to the VARIABLE name.

{ ISYMB, {LIST} tl}

Now, whether o r not an e r r o r has been found, the

BRM

the new VARIABLE. If a n irremediable e r r o r

occurs during execution of the BRM , or occurred

before entry, the 'BAD' exit i s taken from the

BRM, and execution is directed to point -m in
the 'APPend' component.

'DIMS' is entered to input the dimensions of

If no e r r o r occurs {IDIM,(LIST}tl} a r e appro-
priately filled, and the 'GOOD' exit taken from the

BRM.

entry in the VARIABLE LIST. Because the

This completes the input and coding of one

' 'VARiable COMMAND deals with multiple entries,

execution is now directed back to point

ready for a new entry to be accepted.
M K R J

The section of coding w

three BRM'S. BRM 'LOOK' has been described in Section 5. A

description of the other two now follows.

just been described calls

-41 -

BRM 'STAR' (Flow Diagram I$.)

The BRM 'STAR' i s a routine for input and checking
of the first WORD of an entry typed in EDIT MODE
by a MAP user. The call sequence is a s follows:

BRM STAR
[EXIT 1 return location]
 EXIT^ return location]

At entry the A , B , and X registers contain

garbage. At EXIT1 they contain garbage again.

At EXIT2 {A} constitute the third character

input; {X} = jd ; {B} and {T} a r e the three
characters input.

The operation of the routine is a s follows.
entry a "bell" i s output to the teletype to inform
the user that the processor i s waiting for input.

The f i rs t character is input.

the contents of the WORDS of the INSTR- and

PTR-TABLES INDEXED by {INSTRX} a re set
to zero; a carriage return and line feed a r e output

to the teletype, and EXIT1 taken from the BRM.

On

If it is an asterisk,

If the first character input is not an asterisk, the

remaining two characters required to fill up a

WORD a r e input.

last, terminating character a r e separately stored
and EXIT2 taken from the BRM.

The complete WORD and the

-42-

BRM 'DIMS' (Flow Diagram 1 1 .)

BLOCK of

Its call sequence is as follows:

BRM DIMS
[BAD return location]
[GOOD return location]

At entry the A register contains the terminating

character following the VARIABLE name, while
(B} and (X} a r e garbage.' At exit (A) and (X}

a r e garbage, and (B) a r e either garbage, o r an

ERROR MESSAGE reference number.

The operation of the routine is as follows.

the terminating character is stored in a temporary

location T t 2 . Then, i'f an e r r o r has already occurred

prior to entry into the routine, a 'NO' branch i s taken

to point H D X g . Otherwise, a test on the terminating

character is next made.

It=' ' or a carriage return. If i t i s not execution

First

Correctly this may either be

-

i s directed to point H D X O .

If the character i s "=", numbers representing the

row and column dimensions of the VARIABLE a r e
input by the user . The terminating character of the

a, and of the second

these is incorrect,

= 9 and branches to point
bers is greater

-43-

reached point ' .

Considering xecution point H D X O , the
terminating character is either a carriage return or

is incorrect. If it is the latter a 'NO' branch is

taken; the processor sets (ERR} = 9 and branches
to point H D X g .
VARIABLE is a scalar. The contents of both tempo-

r a ry storage locations T and T t 1 a r e therefore set
equal to one, and execution again arr ives at point

If it is the former, then the

q.+iTJ.

At this stage in the discussion execution has arrived
either a t point , or , i f an e r r o r arose, at
point H D X @ . Continuing from the latter point,

all further characters of the LIST entry after the
occurrence of the e r r o r a r e input and discarded one
by one until the appearance of a carriage return. A

line feed is output to the teletype. A BRM 'ERI'

is executed printing out the ERROR MESSAGE

referenced by (ERR} and a branch to point

made.

-44-

INDEX in the S-TABLE for the current VARIABLE.

If its value shows that use of the VARIABLE would

lead to overfilling of the S-TABLE, a 'YES' branch
is taken.

an ERROR MESSAGE reference number and

branches to point .

The processor sets {B} = 4 representing

If no overfilling is indicated {ENDStl) and

01-04{IDIM, (LIST}tl} a r e set equal to the new

BLOCK INDEX. A line feed i s output to the tele-

type, and {LIST} a r e incremented by one.

'GOOD' exit from the BRM is then taken.
The

If any e r r o r occurred during or prior $0 execution
Qf the BRM, execution arr ives at point .
The processor sets {IDIM, {LIST}tl} and
{ISYMB, {LIST}tl} to zero and takes the 'BAD'

exit from the BRM.

LISt (Flow Diagram 12.)

'LISt' is a zero-ARGUMENT COMMAND for output

to the teletype of the LIST of VARIABLES. The

operation merely consists of an execution of the BRM

'LIS1 1 , followed by a branch to point a of the
DIRECTIVE SUBPROCESSOR.

BRM 'LIS1 (Flow Diagram 12.)

The BRM 'LIS1' is a routine which outputs to the

teletype the LIST of VARIABLES.

is as follows:

Its call sequence

-45-

BRM LIS1
[return location]

The contents of the A , B , and X registers a r e

garbage at both entry and exit.

The operation of the routine is a s follows.
an INDEX counter is initialized to - 6 $.
now entered which deals with each entry of the
VARIABLE LIST in tu rn . The INDEXED WORD

in the ISYMB-TABLE is output to the teletype,

followed by three 'lspacesll. A POP WNLO' i s

executed to unload from the INDEXED WORD in

the DIM-TABLE the row and column dimensions
of the VARIABLE, and its BLOCK INDEX in the

S-TABLE. (This latter i s not used).

F i r s t

A loop is

The row dimension, a comma, the column dimension,
a carriage return, and lastly a line feed a r e output

in turn to the teletype. The INDEX counter i s incre-

mented by one.

If all the entries in the ISYMB- and DIM-TABLES
have been treated, exit from the BRM is taken; if

not the processor branches back to point

to handle the-next pair of WORDS INDEXED.

POP 'UNLO' (Flow Diagram 13.)

The POP WNLO' is a routine for unloading a WORD

from the DIM-TABLE .
as follows:

The calling instruction is

-46-

UNLO [address of storing location]

At entry the A a

and the X regis
WORD of the IDSM-TABLE to be un

exit all registers contain garbage.

Operation of the routine is a s follows. CB} and

{A) a r e respectively set equal to O1 -O4{IDSM, {X} -1)

and 05-08(IDIM, {X}} .
INDEX in the S-TABLE of the corresponding

VARIABLE in the ISYMB-TABLE, a r e stored in

the addressed location.

{B.} , giving the BLOCK

0506{A) , giving the row dimension of the VARLABLE,

a r e stored in the addressed location plus one.
0 0 {A} ~ giving the column dimension of the

VARIABLE, a re stored in the addressed location

plus two.

7 8

The exit from the POP is then taken.

APPend (Flow Diagram 14.)

'APPend' i s a zero-ARGUMENT COMMAND for

appending INDIRECT STATEMENTS to a PROGRAM

of such STATEMENTS. Here again the structure is

highly dependent on the use of a single BRM .
entry {INSTRX} constitute the INDEX of the WORDS

in the INSTR- and PTR-TABLES into which the

next INDIRECT STATEMENT is to be coded.

At

Operation of the COMMAND is as follows. Immedi-

a loop i s entered, which inputs a

teration. F i r s t { INSTRX}

-47-

are tested. If the value is negative, the INSTR-
and PTR-TABLES have not yet been completely

filled and more INDIRECT STATEMENTS can

be stored. The 'YES' branch is taken, and the

BRM 'PGRM' executed. This routine inputs
and codes an INDIRECT STATEMENT typed by

the user into INSTR, {INSTRX} and PTR, {INSTRX} .
If during the execution of the BRM use of the
COMMAND is terminated by the user, or an e r r o r

occurs such that use of the 'Append' COMMAND

cannot be continued, EXIT1 is taken from the BRM
and a branch i s made back to point 4 of the

DIRECTIVE SUBPROCESSOR. If the user has

indicated that further STATEMENTS a r e to be

input, EXIT2 is taken from the routine and a branch

back to point MFP) is made.

If at any iteration through the loop described,

{INSTRX} become non-negative, a 'NO' branch

i s taken to point 4 .
and arr ives at point . {ERR) a r e set equal to

{B} and a branch back to point 4 of the

DIRECTIVE SUBPROCESSOR made.

.

The processor sets {B} = 1

BRM 'PGRM' (Flow Diagram 15.)

The BRM

and coding of an INDIRECT STATEMENT into

specified WORDS of the INSTR- and PTR-TABLES.

The call sequence is as follows:

'PGRM' is a routine for handling the input

BRM PGRM
[EXIT 1 return location]
[EXIT2 return location]
ZRO [address of location containing INDEX]

-48 -

At entry and both exits the contents of a l l registers

are garbage.

the user is required eit

INDIRECT STATEME
BRM 'STAR' is executed to test the first charac-

ter input.

INDIRECT STATEMENTS will be input during
execution of the COMMAND using the BRM
EXITl i s taken from the BRM

by EXIT1 from the BRM 'PGRM'.

If an aster isk appears no further

'PGRM':
'STAR', followed

Otherwise the new user 's input is considered to be

a new INDIRECT STATEMENT. The first three

characters a r e input and EXIT2 from BRM 'STAR'

taken. The third character is tested; i f i t is not a

colon an e r r o r condition has ar isen and a 'NO'
branch is taken to point MPxB. If the character

i s a colon, the 'YES' branch is taken and a BRM

'IPC' executed. The first two characters input
should be the LABEL of the STATEMENT. The

BRM 'PC' t r ies to convert the LABEL to i ts

internal form. If unsuccessful, EXIT1 is taken
and a branch made to the point Npx$.

If the conversion is successful, the LABEL i s

provisionally accepted and stored in a temporary
' storage location. Next a BRM 'LOOK' is employed

to check if such a LABEL has been used for a

previous STATEMENT. If so, execution is directed

to point HPX~,
(ERR) = 9 , indicating an e r ro r ; and thence to point

+--El . If not the LABEL is finally accepted as
legal, and execution arr ives at point

r e the processor sets

.

-49-

At this point the next action is to obtain the address

of the location containing the INDEX of the WORDS

to be filled in the INSTR- and PTR-TABLES . This

address i s inserted in the call sequence of a BRM

'INPUT', and the BRM executed. If an e r r o r

occurs, the 'BAD' exit is taken from BRM 'INPUT'

and a branch back to the entry point of the BRM

'PGRM' made.

Otherwise the BRM 'INPUT' completes the input

and coding of the INDIRECT STATEMENT, and

takes the 'GOOD' exit. On return {INSTR,{'k+:}}
and {PTR, {:k:::}}' a r e the coded STATEMENT,
where :k:k is the appropriate INDEX.

Finally, the LABEL is stored in 0506{PTR, {"*}} ;
{ INSTRX} a r e incremented by one, and EXIT2

taken from the routine.

INSert
COMment

BRAnch

DELete (Flow Diagram 16.)

The 'EDIT' component group of the EXECUTIVE

SUBPROCESSOR comprises coding for the three

one-ARGUMENT COMMANDS 'INSert I , 'COMment'
and 'BRAnch' and coding for the two-ARGUMENT

COMMAND 'DELete' . The processor starts by

executing operations that a r e the same for any of
the four COMMANDS, and then a secondary transfer
i s made to complete execution of the particular

COMMAND.

- 50-

Execution is a s follows.

transfer index number is

Next a check
for the STAT

non-zero, th

of ARGUMENT. The 'NO' branch is taken to

point +J . e processor sets (B} = 9

denoting an e r ro r , and branches to point

in the 'APPend' component of the EXECUTIVE

SUBPROCESSOR.

First the secondary

INSert

Otherwise the 'YES' branch is taken, and an

ARGUMENT counter set to zero. A loop i s now

entered which takes the ARGUMENTS in turn,

ignores them i f they a r e zero, (which only happens

i f that ARGUMENT does not exist) and by means of

a BRM 'LOOK' obtains the INDEX of the WORD
in the PTR-TABLE which contains that ARGUMENT

in O i 0 6 .

STATEMENT which has a LABEL the same as the
ARGUMENT. If an ARGUMENT cannot be found in

the TABLE an e r r o r condition ar ises . A branch

to point i s made; the processor sets
(B} = 7 , and execution i s directed to point 4
of the 'APPend' component of the EXECUTIVE

SUBPROCESSOR. The INDICES obtained a re

stored, and the secondary transfer is now made.

In other words, the processor finds the

Each COMMAND will now be dealt with in turn.

The 'INSert' COMMAND is used to insert one or

more INDIRECT STATEMENTS into a PROGRAM
immediately following the STATEMENT with the

-51-

LABEL specified by the ARGUMENT of the

'INSert' COMMAND. At the point

{T t l} constitute the INDEX in the INSTR-
and PTR-TABLES of the coded STATEMENT

after which the insertion i s to occur.

Inserted STATEMENTS are handled one at a

time by a loop.

counters a r e initialized:
Before entry into the loop, two

{Tt2} a r e set equal to {Tt l}
{Tt3} a r e set equal to {Tt l} t 1

The loop i s entered, and a test is made on {INSTRX) .
If the contents are not less than zero, then the

INSTR- and PTR-TABLES a r e full and insertions

a r e illegal. The 'NO' branch i s taken and execution

is directed to point -m in the 'APPend' compo-
nent of the EXECUTIVE SUBPROCESSOR.

Otherwise the 'YES' branch i s taken. Next, al l
the WORDS of the INSTR- and PTR-TABLES

following the ones INDEXED by {Tt2} a re moved
forward one TABLE entry to accommodate the next

STATEMENT to be inserted. A BRM 'PGRM' i s
executed to input the INDIRECT STATEMENT to

be inserted, and code it into INSTR, {Tt2} and

PTR, {Tt2} . From this BRM , EXIT2 is taken if

further STATEMENTS a r e yet to be inserted by the

'INSert' COMMAND. The counters T t 2 and T t 3
are incremented by one, and a branch back to the

beginning of the loop made.

-52-

BRAnch

DELete

If the insertion is complete, EXIT1 is taken from

the BRM 'PGRM'.

one. Beca

a gap in the INSTR- and

after the end of the insertion, the 'DELete' compo-

nent of the EXECUTIVE SUBPROCESSOR is now

used to eliminate it.
cution of the 'INSert' COMMAND.

This process completes exe-

The 'BRAnch' COMMAND is used to redirect the
flow of execution of the INDIRECT STATEMENTS

of a PROGRAM, o r to enter such a PROGRAM.

At the point Hm) { T t l) constitute the INDEX

of the WORDS in the INSTR- and PTR-TABLES

which contain the coded STATEMENT next to be

executed.

Execution of the 'BRAnch' COMMAND i s a s follows.

{INDEX} a r e set equal to {T t l} . Execution is then

directed back to point of the DIRECTIVE

SUBPROCESSOR.

The 'DELete' COMMAND i s used to delete sequences

of INDIRECT STATEMENTS from a PROGRAM. At

the point ME) (T) constitute the INDEX in the
INSTR- and PTR-TABLES of the WORDS containing

the coded STATEMENT first in the NATURAL

SEQUENCE to be deleted. {T t l} constitute the

INDEX of the WORDS containing the coded STATEMENT

last in the NATURAL SEQUENCE to be deleted. If

only one STATEMENT is to be deleted from the

PROGRAM, {T} = {Tt l} .

-53-

?

i n the 'EDIT' component group. Otherwise the 'YES'
branch is taken, and the deletion takes place.

The deletion is effected by moving backward in turn

the sequences of WORDS INSTR, { Tt l} through
INSTR, -1 and PTR, {Tt l} through PTR, -1 so that

the sequences s tar t a t INDEX {T} . The vacant

WORDS appearing at the front of the TABLES a r e
set to zero, while the previous contents of the WORDS
with INDICES { T) through { T t l } -1 a re obliterated.

At the end of this process {INSTRX} a re set to the
previous value minus the number of entries deleted
in each TABLE, and a branch back to point -4)
in the DIRECTIVE SUBPROCESSOR made.

COMment The 'COMment' COMMAND is used to attach a

COMMENT to an INDIRECT STATEMENT. This

COMMENT will then be automatically output by the
DIRECTIVE SUBPROCESSOR immediately prior to
the execution of that STATEMENT.

At the point H C F M) {T4-1) constitute the INDEX

of the WORDS in the INSTR- and PTR-TABLES
ENT to which the

Execution of th

- 54-

is obtained.
may not be room for the COMMENT the user wishes

to attach. A 'YES' branch is thus taken; the pro-

cessor sets {ERR} = 18, denoting a n ERROR

MESSAGE reference number, and branches to point
4 of the DIRECTIVE SUBPROCESSOR.

If the value is greater than 2 9 2 7 there

If the difference is not greater than 2 9 2 7 , the 'NO'
branch is taken. O1 -04{PTR, { T t l } } a r e set equal
to this difference, and a lfbelllr is output to the tele-

type to signal to the user to input the COMMENT

characters. The characters are input, counted and
stored in the CTAB-TABLE at the end of the

existing string until either a carriage return character

appears, o r the count reaches 7 2 . In either case, a

carriage return is added to the end of the COMMENT

string.

Finally a line feed is output to the teletype, and

execution is directed back to point of the

DIRECTIVE SUBPROCESSOR.

This completes the discussion of this group of four

components.

PROgram (Flow Diagram 17.)

'PROgram' is a zero-ARGUMENT COMMAND used

to output to the teletype the PROGRAMS of INDIRECT
STATEMENTS typed in by the user.

follows. A loop handles the decoding and output of

each pair of WORDS from the INSTR- and PTR-TABLES

in turn.

pair of WORDS handled.

Execution is as

The contents of the X register INDEX the
Initially {X} = - 6 3 .

-55-

First the BRM 'WDS' is executed to output the
COMMENT to the teletype, i f one is attached to

the STATEMENT. Next a test is made: i f

05-08{PTR, {X}) are zero implying that a vacant
pair of WORDS in the INSTR- and PTR-TABLES

has been reached, a 'YES' branch is taken and

execution is directed back to point i n the
DIRECTIVE SUBPROCESSOR . This condition

a r i ses only when all the STATEMENTS of a
PROGRAM of less than maximal length have already

been output.

If the contents a r e non-zero the 'NO' branch is taken.

A BRM

STATEMENT coded into O5O6{PTR, {X}} to the
teletype.
The remainder of the contents of the pair of WORDS

are then unloaded in the following way:

'PIC' is used to output the LABEL of the

This is followed by the output of a colon.

{ T t l } a r e set equal to 0708{ INSTR, { X}}

{ Tt2} a r e set equal to 0708{PTR, {X}}
{A) a r e loaded with O1 -06{INSTR, (X}}

A then contains the two coded ARGUMENTS of the

STATEMENT, T t 1 contains the coded COMMAND,

and T t 2 the CHECKNUMBER. Temporary storage

location Tt3- is used as an ARGUMENT counter and

initialized to zero.

The CHECKNUMBER is now tested. If i t is non-zero,

then there is at least one VARIABLE-type ARGUMENT

of the STATEMENT ; a 'YES' branch is taken to the

point HE]. If i t is zero then either there a r e no

-56-

ARGUMENTS o r there is a t least one LABEL-type
ARGUMENT. The 'NO' branch is taken. The

ARGUMENTS are unloaded from the

in tu& and output to the teletype by means of a
BRM 'PIC'. ARGUMENTS with zero value a r e in

actuality non-existent, and a r e not output.

each ARGUMENT a comma is output. After all

ARGUMENTS are output execution is directed to

point +-@ZT) .

egister

After

Considering now execution from the point +-(E],
again each ARGUMENT is unloaded in turn from the
A register. Zero ARGUMENTS a r e again ignored.

This time the contents of the WORD of the ISYMB-

TABLE indexed by the ARGUMENT a r e obtained,
shifted left one character code, and merged with
the character code for a comma.

output to the teletype. After all ARGUMENTS have
been output in this fashion, execution a r r ives at

The result is

At this point the COMMAND is output: (ICOM,{Ttl}}
are obtained and the value of the ARGUMENT counter
reached after the above processes subtracted from

bits 16 and 1 7 .
followed by a carriage return and line feed.

register is incremented by one.

there may be further STATEMENTS to be output, and

the 'YES' branch is taken back to the beginning of the

The result is output to the teletype,
The X

If it is still negative

loop.

If not, the 'NO' branch is taken, and execution is

directed back to point

SUBPROCESSOR.

i f the PROGRAM is of maximal length.

of the DIRECTIVE
This latter condition can only a r i s e

-57-

SAVe (Flow Diagram 18.)'

'SAVe' is a zero-ARGUMENT COMMAND used to

store on a disk file a PROGRAM of INDIRECT

STATEMENTS, together with other data required

to retrieve the PROGRAM and restore it to the
core satisfactorily. First the contents of the INSTR-
and PTR-TABLES are stored; next the contents of

the CTAB-TABLE ; and finally the contents of the

ISYMB- and IDIM-TABLES.

Operation of the COMMAND is as follows.

at point ($-(E) the BRM'OUTF' i s executed to

ready the output file.
316635478 is written on the file, followed by {INSTRX}

WORDS from the INSTR- and PTR-TABLES a r e

alternately written on the file, starting with
{INSTR, -63) and {PTR, -63) and ending with
(INSTR, {INSTRX}} and (PTR, (INSTRX}) .
completes storage of the PROGRAM itself.

On entry

Next the file identifying WORD

This

The total number of COMMENT characters in all

COMMENTS is now calculated and stored on the file.

The contents of the CTAB-TABLE a r e then written
on the file WORD by WORD, three characters at a
time. This completes storage of the COMMENTS

attached to the STATEMENTS of the PROGRAM.

Finally, the LIST of VARIABLES is stored, as

follows.

by alternate WORDS from the ISYMB- and IDIM-
TABLES, starting with {ISYMB, -6$} and {IDIM, -6fl

(LIST} are written on the disk file, followed

{nm, {LIST}) .

-58-

The disk file is then closed and a branch back to

point 4 in the DIRECTIVE SUBPROC

made.

The 'SAVe' COMMAND uses one BRM.

BRM 'OUTF' (Flow Diagram 19.)

The BRM 'OUTF' is a routine for making ready a

disk file for output from the core.
is a s follows:

The call sequence

BRM OUTF
[return location]

Both a t entry and a t exit all registers contain garbage.

Operation of the routine is its follows.

message MS5 is output to the teletype:

On entry, the

FILE NAME

A BRS 18 is executed to read the output file name

from the teletype.
'GOOD' exit is taken.

loaded, and a BRS 19 executed to open the file for

output. If the file is successfully opened, the 'GOOD'
exit is taken.
output to the teletype, and the exit from the BRM

taken.

If the file name is acceptable, the
The file type (symbolic) is

A carriage return, and line feed a r e

If the file name is unacceptable, o r cannot be opened,

a 'BAD' exit is taken from the BRS concerned. {ERR)

- 59-

a r e set equal to 9 denoting an ERROR MESSAGE

reference number. A BRM 'ER1' is executed to

output an ERROR MESSAGE to the teletype, and
execution returns to the s tar t of the BRM to t ry
and introduce a new file name.

REStore (Flow Diagram 2$.)

'REStore is a zero-ARGUMENT COMMAND used

to recover a PROGRAM of INDIRECT STATEMENTS
and other information to make i t usable, from a disk

file. It is complementary to the 'SAVe' COMMAND.

Fi rs t the contents of the INSTR- and PTR-TABLES

a r e recovered; next the contents of the CTAB-TABLE;
and lastly the contents of the ISYMB- and DIM-
TABLES. The previous contents of these TABLES are

deleted. On the user 's requirement, the VARIABLE
LIST may then be redimensioned: this involves the

reconstruction of the IDM-TABLE .

Operation of the 'REStore' COMMAND is as follows.

On entry a t point ME) the BRM
to make ready the disk file for input to the core.

f irst WORD on the file should be the file identifier
316635478.

a 'SAVe' COMMAND. The 'NO' branch is taken;

the file is closed, ERROR MESSAGE 9 output to the

teletype, and execution directed back to point HE].
If the file identifying WORD is correct, the 'YES'

branch i s taken and (INSTRX) set equal to the contents

of the next file WORD.
WORDS in the INSTR- and PTR-TABLES to be filled
from the file,

' INF' i s executed
The

If it is not, the file is not one created by

This gives the number of

-60-

The WORDS of the INSTR- and PTR-TABLES

are now filled alternately from successive WORDS

of the disk file, starting a t {INSTR, - 6 3) and

{PTR, - 6 3) , and terminating at (INSTR, {INSTRX}}

and {PTR, {INSTRX}} .
the INSTR- and PTR-TABLES a r e set to zero.

The remaining WORDS of

The next WORD input from the disk file is the number

of COMMENT characters in the CTAB-TABLE. The
characters themselves a r e read into the CTAB-TABLE

from the file, three a t a time, WORD by WORD. The

remainder of the CTAB-TABLE is set to zero. The
string pointers for the TABLE a r e now reinstated.

This completes the input from the file of the PROGRAM

and its attached COMMENTS. It now remains to input

the VARIABLE LIST. The next WORD input from
the file into {LETT) gives the length of the VARIABLE

LIST . WORDS a r e now read from file alternately

into the ISYMB- and IDUI-TABLES, starting at

{ISYMB, -6pl) and {IDIM, -68) and ending at

{ ISYMB, {LIST}) and {LDIM, {LIST}} .
WORDS of the ISYMB- and IDIM-TABLES a r e set to

zero.

The remaining

The disk file is then closed.

The LIST of VARIABLES is now output to the tele-

type: first the message MS18:

VARLABLES USED

and then the LIST itself by means of a BRM 'LIS1 1.

Execution now ar r ives at the point H R X g . The

user must now decide whether he,wants to redimension

the VARIABLE LIST. Message MSll is output to

the teletype:

-61 -

REDIMENSION VARIABLES ?

Characters are now input one by one until a carriage

return appears. A line feed is now output to the

teletype.

'NO' a branch to point 4 of the DIRECTIVE

SUBPROCESSOR is made. If the characters consti-
tute neither the word 'NO' nor the word 'YES'

execution reaches point H R E 3 and {ERR} are

set equal to 9 denoting an ERROR MESSAGE reference

number. If the characters constitute the word 'YES'
the VARIABLE LIST is now redimensioned.

If the characters input constitute the word

Each entry in the ISYMB-TABLE is treated in turn
excepting the standard output VARIABLE , starting

at {ISYMB, - 5 9) and ending at {ISYMB, {LIST}} .
The name of the VARIABLE is output from the current

WORD in the ISYMB-TABLE , followed by a "bell".
The terminating character of the name, either I t = "

or a carriage return, is input by the user, followed

by the new dimensions, the latter by means of the
BRM 'DIMS'. At the end of this process the IDIM-
TABLE has been completely reconstructed, and

execution returns to point 4 of the DIRECTIVE

SUBPROCESSOR.

If the 'BAD' -exit was taken from BRM 'DIMS'
abnormally stopping the redimensioning process, o r

i f execution passed the point
BRM 'ER1' is executed to output an ERROR

MESSAGE to the teletype.

to point
process.

M R X a then a

Execution then returns

N R X # to repeat the redimensioning

-62-

The IREStore' operation calls four subroutines. Of these only
BRM'INF' has not yet been described.

BPM 'WFI (Flow Diagram 21.)

The BRM IINF' is a routine for making ready a
disk file for input to the core.

is as follows:

The call sequence

BRM I N F
[return location]

Both a t entry and at exit all regis ters contain garbage.

The operation of the routine is as follows.
the message MS5 is output to the teletype:

On entry

FILE NAME

A BRS 15 is executed to read the input file name

from the teletype. If the file name is acceptable, the

'GOOD' exit is taken. Then a BRS 16 is executed
to open the file for input. If the file i s successfully

opened, the 'GOOD' exit is taken. A carriage return

and a line feed a r e output to the teletype, and the exit

from the BRM taken.

If the file name is unacceptable, o r cannot be opened,

a 'BAD' exit is taken from the BRS concerned. The
processor sets {ERR) = 9 denoting a n ERROR

MESSAGE reference number. A BRM 'ER1' is

executed to output the indicated ERROR MESSAGE

- 6 3 -

to the teletype, and executio returns to the sta

the BRM to t ry and introduce a new file name.

This concludes the description of those COMMANDS not involving

manipulation of the matrices of MAP.

Introduction to Floating =Point Coding

THOSE COMPONENTS of the EXECUTIVE SUBPROCESSOR involving

the actual manipulation of MAP matrix and scalar quantities have

not yet been described.
of certain standard forms of ARPAS coding specially adapted to

the processing of double-location WORDS in the S-TABLE and
other temporary storage TABLES. In the SDS 940 system all

floating-point operations a r e software generated: a range of BRS's

and SYSPOPS handle the operations of addition, subtraction, multi-
plication, division, and several others

In these components repeated use is made

12 .

The loading and storing of a floating point number are achieved by

the 'LDP' and 'STPI SYSPOPS respectively.
i s moved to and from the A register; F2 and E of the WORD a r e

moved to and from the B register.

F1 of the WORD

To car ry out an operation on a specific WORD in a TABLE of

TYPE I o r I1 WORDS, the INDEX of that WORD is loaded into

the X register.

desired operation contains the name of the TABLE modified by

the contents of the X register.

The address field of the instruction executing the

To load the X register either the

scribed in the SDS
OATING POINT

- 64-

instruction 'CAX' (copy A to X) o r the instruction 'LDX * * I

(load X from address *:*) might be used.

gramming practice.

defined so that operations on specific WORDS in TABLES of

TYPE 111 WORDS may be similarly programmed.

This is standard pro-

In the MAP processor two POPS have been

POP 'FLDX' (Flow Diagram 22.)

The POP 'FLDX' is the analogue of the 'LDX'

instruction.

location a r e multiplied by two and placed in the

X register.
A and B registers are left intact. The calling

instruction is :

The contents of the addressed

The addressed location, and the

FLDX [address of location containing
value to be loaded]

POP 'FCAX' (Flow Diagram 22.)

The POP 'FCAX' is the analogue of the 'CAX'

instruction.
multiplied by two and placed in the X register.
The A and B registers contain garbage a t the

end of the operation.

The contents of the A register a r e

The calling instruction is:

FCAX

EXAMPLE: To get the WORD INDEXED by (TEMP} from a TABLE - -

TYPE I/II
LDX TEMP
LDA TABLE, 2

TYPE 111

FLDX TEMP
LDP TABLE, 2

-65-

In general, since matrix operations consist of repetitive operations
on their elements, there will be many nested loops in the par t of the

EXECUTIVE SUBPROCESSOR which deals with MAP matrix
manipulation.

same manner a s loops a r e handled in a Fortran program.

some sections of coding in the processor were written by translating

Fortran programs into the standard structures of ARPAS code to

be described. This applies in particular to the 'DETerminant' ,
'INVert ' and 'EIGenvalue I COMMANDS .

These loops a r e handled in a standard way, in the

In fact

The process of carrying out a particular operation on each of the

elements of a matrix VARIABLE in the S-TABLE in turn will now

be described.

Assume the following:

This i s readily generalized to other related processes.

(T) constitute the BLOCK INDEX in the
S-TABLE of the VARIABLE occurring

immediately before the VARLABLE to be
processed. This INDEX is the INDEX

of the WORD in the S-TABLE immediately
before the first WORD of the BLOCK of

storage devoted to the VARIABLE to be

processed.

(T t l) is the number of elements of the matrix

VARLABLE, that is, the number of WORDS
in the BLOCK devoted to that VARIABLE.

Tt2 i s a temporary storage location.

Then the following section of coding will load and operate on each of

the elements of the matrix VARIABLE in turn.

-66-

EXAMPLE:

CLA
STA T t 2

RETN MIN T t 2
LDA Tt2
ADD T
FCAX
LDP S , 2

1 operate on element obtained from TABLE [
LDA Tt2
SKE T t l
BRU RETN

It is easy to see how this structure may be extended to nested loops

and other forms.

indices separately, and then to calculate from these the INDEX in
the S-TABLE of the element of the VARIABLE. The POP 'CALC'

of the processor handles this process.

Sometimes it is useful to generate row and column

POP 'CALC' (Flow Diagram 23.)

The POP 'CALC' converts the row and column
indices of a n element of a matr ix VARIABLE to

the INDEX of that element in the S-TABLE .
The calling instruction is :

CALC [address of location containing
column size]

At entry {A} and {B} are the row and column index

values, respectively.
INDEX of the element in the S-TABLE, and {B} are

At exit (A} constitute the

garbage. The X register is not used. Operation is

as follows: one is subtracted from the row index; the

result is multiplied by the column dimension of the
matrix, and the column index added. This result is

-67-

the INDEX in the S-TABLE relative to the BLOCK

INDEX of the previous VARIABLE in the TABLE.

The following example shows the use of the POP 'CALC' in con-

junction with a double loop. Each element of the matrix VARIABLE

. i s loaded and operated on in turn row by row. For this example
assume the following:

{T} constitute the BLOCK INDEX in the S-TABLE

of the VARIABLE occurring immediately
before the VARIABLE to be processed.

{T t l} constitute the row dimension of the matrix

VARIABLE.

{Tt2} constitute the column dimension of the matrix

VARIABLE.

T t 3 and T t 4 a r e temporary storage locations.

EXAMPLE:
CLA
STA T t 3

RETl MIN T t 3
CLA
STA T t 4
MIN T t 4
LDP T t 3
CALC Tt2
ADD T
FCAX
LDP S,2

operate on element obtained from TABLE 1 II
LDA Tt.4
SKE T t 2
BRU RETl t3
LDA T t 3
SKE T t 1
BRU RETl

-68 -

This completes the description of the basic coding structures
involved in execution of COMMANDS dealing with the manipulation

of MAP matrices.

the COMMANDS themselves.
It now remains to describe the operation of

Part II: Components Involving the Manipulation of Matrices

THE BASIC CODING structures from which the components of

the EXECUTIVE SUBPROCESSOR executing matrix manipulation

operations a r e built up have been described.
components themselves are shown in Flow Diagrams 24-35.
the description that follows, the constituent basic coding structures
a r e in general not described step by step, but mostly a s complete

functional units.

Flowcharts of the

In

OMIt (Flow Diagram 24.)

'OMIt' is a single-ARGUMENT COMMAND used to

delete an entry from the LIST of VARIABLES. At
the same time the COMMAND erases from the

S-TABLE the BLOCK of storage associated with

the deleted VARIABLE, and closes up the gap.

Operation of the COMMAND is as follows.

entry at point ME> a BRM 'LAB' is executed

to check the type of ARGUMENT. If the ARGUMENT

is LABEL-type the 'BAD' exit is taken, and execu-

tion proceeds to point a in the 'EDIT' component

group. If the ARGUMENT is correctly VARIABLE-

type, the 'GOOD' exit is taken from the BRM. The

At first

contents of the X register a r e set equal to the
INDEX of the WORD in the ISYMB-TABLE im-

mediately after the one to be deleted.

A check is now made on the value of this INDEX.

If it is not greater than -59 a 'NO' branch is

taken and execution returns to point

DIRECTIVE SUBPROCESSOR . This condition
can only a r i s e i f the user t r ies to delete the stan-

dard output VARIABLE from the LIST : the action

is to ignore the 'OMIt' COMMAND.

of the

If the value of the INDEX is greater than -59 a

'YES' branch is taken and the deletion process

takes place.
and their difference a r e temporarily stored in loca-

tions Q , Qt1 and T respectively. The last quantity

is the number of WORDS by which all the entries in
the S-TABLE after the ones deleted must be moved
backward to f i l l the gap created.

01-04{IDIM, {X}-23, 01-04{DIM, {X}-1}

Next the ISYMB- and DIM-TABLES are changed a s
follows. For all values of ** starting at {X} and
ending at -1, {ISYMB,**< -1) a r e replaced with

{ISYMB,**') , and (DIM,** -1) a r e replaced with
{DIM, **} - {T} i f {IDIM,**} # $ or zero otherwise.

One is subtracted from {LIST} .

Finally the S-TABLE is updated as follows.
values of ** starting at {Qt l} t l and ending at
{ENDStl}, {S,**k) a r e moved backward to {S,**-T},
thus obliterating the BLOCK of storage allocated to

the deleted VARIABLE .

For all

-70-

(IsYMB,$} and {IDIM,$} are
a branch back to poi

SUBPRO R made.

The 'OMIt' COMMAND uses one routine not already described.

BRM 'LAB' (Flow Diagram 25.)

The BRM 'LAB' is a routine for checking the type

of an ARGUMENT of a STATEMENT immediately
prior to the execution of i ts COMMAND. The call

sequence is:

BRM LAB
[return location]

Both at entry and at exit all registers contain garbage.

Operation of the BRM is as follows.

(Tt3) constitute the CHECKNUMBER of the
STATEMENT. This i s tested: i f it i s zero, the

ARGUMENT is LABEL-type; the 'NO' branchis

taken to point -m in the 'EDIT' component group.
If it is non-zero, then the ARGUMENT is correctly
VARIABLE-type. A 'YES' branch is taken, and

{ T t l } and (Tt2) replaced by their respective two's

complements.

On entry

The exit from the BRM is then taken.

EIGenvalue
DETerminant

INVert
DIAgonal s u m (Flow Diagrams 26-29.

I component group comprises three

single -ARGUMENT COMMANDS 'DETerminant I,

-71 -

'INVert' and 'DIAgonal sum', where the result of

the operation is placed in the standard output

VARIABLE ; and one single-ARGUMENT COMMAND

'EIGenvalue
is used as working space, and the results a r e output

to the teletype.

where the standard output VARIABLE

On entry, a preliminary section of coding common to
any of the four COMMANDS i s executed.

dary transfer is then made to further sections of

coding dealing separately with each individual
COMMAND.

A secon-

Flow diagram 26 shows the preliminary section of

coding. Operation is a s follows. On entry at point

Hs$) the secondary transfer index number i s
stored, and a BRM 'LAB' executed to check the

type of the ARGUMENT.
found to be LABEL-type , the 'BAD' exit i s taken,
and a branch to point 4 in the 'EDIT' compo-

nent group made. If the ARGUMENT is VARIABLE-

type the 'GOOD' exit is taken from the BRM.

If the ARGUMENT is

Next a POP 'UNLO' is executed to unload the dimen-

sions of the VARIABLE and its BLOCK INDEX in

the S-TABLE from the IDLM-TABLE. A test is

then made on these dimensions: i f the VARIABLE
is not a square matr ix a 'NO' branch is taken; the

processor sets {B} = 8 and a branch to point
in the 'APPend' component is made.

If the VARIABLE is a square matrix, the 'YES'

branch is taken and a further test made.

COMMAND executed is not 'INVert', a BRM 'FIX'

If the

-72-

is executed to se t the row and nsions

unity .
the

output

VARIABLE to the same as those of the ARGUMENT
associated with the COMMAND. Execution con-

verges again to a common path and the secondary
transfer is made.

DIAgonal s u m The 'DIAgonal sum' COMMAND is used to find

the trace of a square matrix.

relatively simple example of the standardized
structure of the floating-point coding.

proceeds from the point HK].
s u m is made of all the diagonal elements of the
VARIABLE indicated in the ARGUMENT, the
result being accumulated in W, 1 13.

s u m i s complet-e, {s, 1) a r e set equal to {w, 1) .
Hence on completion of the COMMAND, the
standard output VARIABLE is a scalar, with a
value equal to the t race of the VARIABLE operated

on.

Its execution is a

Execution

A recursive

When the

DETe rminant The 'DETerminant' COMMAND is used to

(Flow Diagram 27.) find the determinant of a square matrix.

The method of pivotal condensation is used.

N by N matr ix this method consists of N-1 iterations.

In each iteration another column of the matrix is

operated on so as to bring its sub-diagonal elements

to zero.

For an

l 3 The W-TABLE is a orary storage TABLE for TYPE I11
WORDS; its length WORDS. It is capable of storing a
MAP matrix of any permissible size.
normally used.

The zeroth WORD is not

-73-

In the 'DETerminant' component of the EXECUTIVE

SUBPROCESSOR these iterations a r e carried out by

a loop: each iteration of the loop is in two phases.
In the f i rs t phase the current diagonal (pivotal) ele-
ment is tested, and made non-zero i f the operation

i s necessary.
operated on to bring the sub-diagonal elements of a

new column to zero.
tions, the determinant of the resulting matrix is the

product of the diagonal elements.

In the second phase the matrix is

On the completion of the itera-

Execution of the COMMAND is a s follows. On entry

a t point MKT) a temporary result store Q i s

set equal to 1. $.
transfer the elements of the ARGUMENT to the

A BRM 'COPY' is executed to

standard output VARIABLE. If the ARGUMENT i s

scalar, the condensation process is not required and

execution proceeds to point Hx).
a 'NO' branch is taken.

dimension of the ARGUMENT minus one, and the

Otherwise
{KCl} a re set equal to the

contents of a loop counter KK initialized to zero.

Execution now reaches point
iterative loop i s entered.

and the main

The first phase is now carried out.
mented by one, and the contents of a counter Q t 3

set equal to one. { Q t 3 } count the number of times
attempts a re made to make non-zero a zero pivotal

element. Execution now reaches point
a t the s tar t of a loop which i s iterated once every

time an attempt i s made to produce a non-zero pivot.

{KK} a re incre-

- 74-

In this loop, f irst the absolute value of the pivotal

element OO(KK, KK) l4 is calculated. If

is less than about lfr7 it i s taken as zer

steps a r e taken to make i t non-zero.

the first phase in the main loop i s finished.
Otherwise

The following action i s taken to t ry to produce a

non-zero pivot.
and {Qt3} a r e incremented by one.

made: i f {Qt3} = { K t l } then it is impossible to

produce a non-zero pivot and the VARIABLE consti-

tutes a singular matrix. A 'YES' branch is taken

to point m.
column {Qt5} of 00 i s added into the column

{KK} at point . Execution then returns

to point

contained in column {KK} .

{Qt5} a re set equal to {Qt3} t {KK}

A test is now

If the equality does not hold, the

for a new check on the pivot now

Suppose now that the pivotal element OO(KK, KK)
has been made non-zero.
main loop is now carried out.

set equal to {KK} .

The second phase of the
F i rs t { K K t l } a r e

Execution now reaches point
For a t the start of another inner loop.

each iteration round this loop a row of the matrix

i s operated upon so as to bring the element in the

row in the same column as the pivotal element equal
to zero. The following action is taken. { K K t l }
a r e incremented by one. The ratio

l4 This new notation is also used in later parts of this section. By '

OO(*,*:k) is meant the element of the standard out ut VARIABLE
'00' whose row and column indices are {*} and P **} respec-
tively. To obtain OO(:k,**} a BRM 'CALC' is first employed
to obtain the INDEX of the appropriate WORD in the S-TABLE.

-75-

00(KKi-1, KK)/OO(KK, KK) is calc

Then row {KK} of the matrix is

stored ratio, negated and added into the row

{KKtl} of the matrix. If further rows of the matrix

remain to be treated, execution returns to point
If not the second phase is complete. .

Another test is now made. If {KK} # { K t l } then

further iterations of the main loop a r e required to
complete the condensation process. Execution

therefore returns to point M. I f not, a

'YES' branch is taken; the diagonal elements of

the matrix a r e summed and the result placed in Q .
The final result in Q is then transferred to the f i rs t

WORD in the S-TABLE . Execution now reaches

point , at which point the standard output
VARIABLE contains the determinant of the matrix

VARIABLE indicated by the ARGUMENT.

If the value is very small o r zero, execution proceeds
via a 'YES' branch to point e ,
'NO' branch is taken, and execution returns to point

Otherwise a

in the DIRECTIVE SUBPROCESSOR.

Execution reaches point e i f the matrix is

singular. The standard output VARIABLE is set

equal to #. #, and message MS4 output to the
teletype :

DETERMINANT ZERO

Execution then returns to point 4 in the
DIRECTIVE SUBPROCESSOR.

-76-

EIGe nvalue The 'EIGenvalue' COMMAND is used to
(Flow Diagram 28.) find the eigenvalues and eigenvectors of a

square matrix.

and not stored.

used to derive the characteristic polynomial of the
matrix.

to obtain the eigenvalues.

then obtained using the eigenvalues, and intermediate

results from the application of the Leverrier-Fadeev

method.

The results a r e output to the teletype,

The Leverrier-Fadeev method i s

This is then solved by Bernoulli's method,

The eigenvectors a r e

A complete exposition of the method may be found in

[7].
below.

n by n matrix A.

is

For convenience the algorithms a re summarized

Let hl , A 2 , . . . , A be the eigenvalues of the n
Then the characteristic polynomial

- q2Xn-'. X - ~ X - qn = $ n- 1 Xn - qlX

The following recursion gives the coefficients :

At least one of the columns of the matrix ai, where

n- 1 a. 1 1 = A. I t Xre2B1 t t XiBnm2 t B,-l (3)

-77-

is the eigenvector corresponding to X
others a r e zero.

then it is certain that the result is the eigenvector.

while the i’
If the columns a r e summed,

The eigenvalues are obtained by finding in turn all
the roots of the characteristic polynomial.

roots a r e obtained in turn, starting with the domi-

nant one.

polynomial is reduced and the process repeated as

many times a s required.

recursion is formed:

The

When this is obtained the order of the

At each stage the following

s1 - q1 = 0

s2 - S1q1 - 2q2 = 0

s lqn - l - nqn = 0 sn - Sn-1q1 - 7
1 (4)

f o r i > n

If the dominant root i s a real root X1 then

S
Lim 2 = hl
p-”” p-1 S

If the dominant root is a complex pair X1(cos p1 f. i sinpl}
then

p - w ~ s -s& p-1 p-3 p-2

2 = X1; Lim
P-m

-78-

If the dominant root is a real pair of equal magnitude

but opposite sign X1, -X1 then

2 S

Lim $?- = - l 1 p-00 p-2

The method will not work if two distinct complex
pairs exist with equal absolute value.

The operation of the 'EIGenvalue' COMMAND is now

described. It is divided into three phases. In the f i rs t

phase, the coefficients of the characteristic polynomial
are calculated.

tained in a loop iterated once for every real root or

complex pair the second phase obtains from the poly-

nomial.

o r complex pair corresponding to the root o r pair

found by the second phase.
output of the results to the teletype, and reduction of

the order of the polynomial.

The second and third phases a re con-

The third phase calculates the eigenvector

The third phase also handles

Execution of the first phase is a s follows.

at point HE) a BRM 'COPY' is executed to
transfer the contents of the VARLABLE indicated by

the ARGUMENT to the W-TABLE. The TR-TABLE

is used to store coefficients of the characteristic

polynomial. Next

the matrix in the W-TABLE is searched to find the

On entry

15 { TR, $} a r e set equal to 1. $.

l 5 The TR-TABLE is a TYPE 111 TABLE 1 1 WORDS long used for
the temporary storage of floating-point numbers.

- 79-

two elements having the greatest and least absolute

values.
absolute values. All the elements of the matrix

in the W-TABLE a r e then normalized by dividing

{Q) a r e set equal to the mean of the two

by {a).

Actual calculation of the coefficients of the polyno-

mial now takes place. The counter {Qt3) is

initialized to zero.

(-+--El , the s tar t of a loop which is iterated once

for every coefficient calculated. Inside the loop,

execution proceeds as follows. First (Qt3) a re
incremented by one.

8. 8 .
of the accumulated s u m of the diagonal elements of

the matrix in the W-TABLE divided by FLOAT(Qf3).

At the same time the column (Qt3) of the V-TABLE

is set to zero. Execution arr ives a t point Hx) ,
a t which stage {TR, {Qt3}} a r e added to the diagonal
elements of the matrix in the W-TABLE . All the

columns of this matrix a re then added into column

(Qt3) of the V-TABLE, and at the same time the

matrix is premultiplied by the normalized matrix
VARIABLE indicated by the ARGUMENT, setting
the result back in the W-TABLE .

Execution now reaches point

{TR, (Qt3)) a r e set equal to

{TR, (Ot3)) a r e then set equal to the negative

16
17

It can be seen that this process corresponds to one
iteration of the recursion shown in Eqn. (2) above.

If (Qt3) = {K+l} where (K t l) constitute the dimen-

sion of the VARIABLE then all the coefficients have

FLOATiQt3) means (Qt3) converted to a floating-point number.

l 7 The V-TABLE is a temporary storage TABLE for TYPE I11
WORDS, la1 WORDS in length.
purpose to the W-TABLE .

It is identical in form and

-80-

been found.

more by returning to point . On comple-

tion, execution arr ives a t point

{ K t l } = {Kt2) equal to the dimension of the

VARIABLE.

Otherwise the loop is iterated once

HE], with

Point

taining the second and third phases of execution,
and is also the beginning of the second phase.

Essentially this phase calculates the dominant

root or complex pair of the characteristic polynomial,

by use of Eqns. (4) and then by iteration of Eqn. (5)
until one of the limits given in Eqns. (6) through (8)
has been reached to within some specified accuracy.

M x) is the beginning of the loop con-

F i rs t the iteration counter (Qt3) i s initialized to
zero.

the accuracy criterion has been tentatively met,

a r e set to zero. The W-TABLE i s from now on

used to store intermediate results.
{ W, 97) and { W, 98) will contain the real and

imaginary parts of the eigenvalues of the norma-

lized matrix. At this point {W, 98) and {W, l$$)
a r e set equal to 8. #.
Eqns. (4) and (5) i s now entered at point M.
{Qt3} are incremented by one, and { K K t l } ,
denoting either a real or complex root, set to unity.

{KK) , which indicate the number of times

Eventually

The inner loop iterating

Either of two courses of action now ensue: i f

(Qt3), > 18, then {Qt4}.are set equal to 18 and
(W, 1). (W, 18) each moved backwards one

WORD to W,# W , 9 . If (Qt3) 18, then

{Qt4) a re set equal to (Qt3) .

a r e set to FLOAT(Qt3) and (W,{Qt4}} to 8.16.
In either case {W, $}

-81-

Next (Qt6) a r e set to either (Qt3) or (Ki-2) ,
whichever has t value. Execution now
reaches point

set equal to the sum from i = 1 to {Qt6) of
{TR, i) multiplied by { W, (Qt4) -i) . At this
stage, i f more than 1 8 iterations of the loop

have been carried out, {W, 1 8) . . . {W, 1) a r e
the ten most recently calculated values Si in

Eqn. (5).

, where {W,{Qt4)) a re

A further test is made.

indicates that fewer than 1 6 iterations of Eqns.

(4) and (5) have been carried out, no testing for

convergence is made, and execution proceeds to

If the value of (Qt3)

point C/F(=) . If more than 1 5 iterations
have been carried out, testing is now started.
F i r s t a test is made for convergence to the limits

shown in Eqns. (7) and (8).

The processor sets

2 and calculates {W, 1$){W,8) - {W, 9) . This

latter, i f non-zero divided by {W, 11) , is stored

in W, 1 2 .
is less than-about lfr7 the convergence criterion is

met this iteration, and {KK) a r e incremented by

one. III any event {w, 188) a r e set equal to

{W, 12) and a test for convergence to the limit

shown in Eqn. (6) follows.

If the absolute value [{W, 12) - {W, l$B)]/{W, 12)

2
The test is made on {W, 11) , divided by {W, 8)

if the former is non-zero. If the absolute value

-82-

is less than 1$'7, then the convergence criterion

is met this iteratio {KK) a r e de

one. In this case

divided by {W, 9) i f the former is non-zero.
the absolute value is still > 1$'7 then {W, 97) a r e

set equal to the absolute value instead.

convergence testing for the current iteration.

} a r e set equal to {w, 18),

If

This ends

If convergence is to a real root, then by this pro-

cess, {KK} increase negatively, a s the appropriate

criterion is satisfied on successive iterations.

convergence is to a real or complex pair, then

(KK} increases positively.

a r e considered sufficient for termination of the

iterative process. Accordingly, execution is as
follows. If the absolute value of {KK} > 4 then

a 'YES' branch is taken to point . Other-

wise a 'NO' branch is taken to point MT).
Here, i f (Q t 3) # 1588 execution returns to point

If

Four such iterations

for a new iteration. If not, no root could

Message MS8 : be found by the above process.

COMPUTATION FAILURE

is therefore output to the teletype and a branch made

to point a in the IINVert' component.

In the second phase it now remains to calculate the

eigenvalues from the results of the iterative pro-

cess: execution is at point M.
then execution proceeds to point NE) . Here

if { ~ , 1 2) a r e

There is a real

equal to the square root (as found by a BRM SQRT)

If {KK} # $

ative a 'NO' branch is taken.

r of roots. {w, 97) a r e set

-83-

of the negative o

matrix VARIABLE.

If in the above process {W, 12) had been positive
a 'YES' branch would then have been taken. If
this happens {W, 99) a r e set equal to

[{W, 1$){W, 7) - {W, 9){W, 8)1/{W, 11)
to {W, 99) /2 .$, and {W, 98) to the square root

of {W, 12) - {W,97} ' .
{W, 96) a r e set respectively to {W, 97) and

{W, 98) multiplied by {Q) .
equal to -1 and a branch to point HE)
made.
imaginary par ts of the complex eigenvalue of the
original matr ix VARIABLE.

{W, 97)

Then {W, 95) and

(KKi-1) a r e set

{W, 97) and {W, 98) a r e the real and

The third and last phase of'execution is now

entered.

rea l root, and twice for a complex pair encloses

the whole process.
the loop a r e set to unity.
f i rs t n - 1 powers of the eigenvalue a r e calcu-

lated as follows. (W, 21) and (W, 31) a r e set

to 1 . j?f and $. $ respectively. Then for values

of i from 2 to { K t l) , {W,Z$t i) are set equal

to

An inner loop, performed once for a

(Qt3) a counter indexing
On entry into the loop,

and {W, 3$ti) a r e set equal to

9 ti

-84-

Execution now reaches point

point {W, 21). {W, 2$t{Ktl)} and
{W, 31). {W, 3$t{Kt1)) a r e the real and

imaginary par ts of the scalar multipliers of the

B matrices in Eqn. (3).

, at which

The s u m of the columns of Q in Eqn. (3) is now
obtained: each column of the matrix in the

V-TABLE is multiplied in turn by the real and

imaginary par ts of the appropriate multipliers

previously'calculated, and s u m s of all the real

and imaginary columns obtained. The result is

the eigenvector corresponding t o the eigenvalue
already obtained.
are placed respectively in {W, 41). {w, 4$t{Kt1}}

and {W, 51).{W, 5$t{Kt1))
decremented by one to show that another root of

the polynomial is found and the order has de-

The rea l and imaginary par ts

{Kt2} are then

creased by one.

The eigenvector found is next 'normalized so that
the largest element has a unit modulus, unless

the eigenvector is identically zero. It now remains

to output the eigenvalue and vector calculated.

First either message MS2 :

COMPLEX EIGENVALUE

is output to the teletype if the eigenvalue is complex,

o r the message MS3 :

REAL EIGENVALUE

-8 5-

return and two line feeds.
now output.

are output: {W,4$ti} ; {W, 5$ti) i f { K K t l } < $,
and lastly a carriage return and line feed.

{ K K t l) < $, {W,96} and {W, 98) a r e negated.

The eigenvector is

For i = 1 to { K t l } , the following

If

This completes output of the results.
(Qi-3) = { K K t l } i t means that the inner loop

round the third phase has been iterated the

correct number of times (once for a rea l

eigenvalue and twice for a complex pair).
not {Qt3} a r e decremented by 2 and the loop

iterated once more.

If

If

Once the processor makes an exit from the inner .
loop, in this phase of execution i t only remains
to reduce the order of the polynomial in order

to find further eigenvalues, i f any.

made on {K+-2) : i f the contents have been r e -
duced to zero, all eigenvalues have been found.

A 'YES' branch is taken. A carriage return

and line feed a r e output to the teletype, and
execution branches to point a i n the 'INVert'

component. If (K t 2) a r e non-zero then a 'NO;
branch is taken, and the order of the polynomial

is reduced as follows.

A test is

If { K K t l } are not negative, showing that the
the order of the

-86-

characteristic polynomial is reduced by o
division by a linear factor.

accomplished by recalculating coefficients in

this way: for i = 1 to (K t 2) , the product

{TR,i-l)(W,97} is added into {TR,i) .
tion now returns to point

new dominant root of the reduced characteristic
polynomial.

The division is

Execu-
Hx) to find the

If { K K t l } a r e negative, then the order of the

polynomial must be reduced by two by division by
a quadratic factw, since a complex pair of
eigenvalues were previously obtained. The

coefficients of the polynomial a r e recalculated

as follows.
If {Kt2} a r e equal to unity then no further cal-

culation is required. Otherwise, for i = 2 to

(K t 2 } , {TR,i-l}{W, 99) - {TR,i-2){W, I$$>
a r e added into { TR, i) .
to point M x) as in the case of the real

eigenvalue.

{W, 99) ar,e added into {TR, 1) .

Execution now returns

This completes discussion of the 'EIGenvalue '
component of 'GROUP$'.

INVert The 'INVert' COMMAND is used to

(Flow Diagram 29.) invert a square non-singular matrix. A
standard method using elemental transforms is

used.
a minimum amount of storage space.

n by n matrix, besides the storage for the matrix

itself, only a further 2n integer locations a re
required .

The method has the advantage that it requires
For an

-87-

Briefly for an n by n matrix the algorithm is

as follows. Two col

to zero. A main 1

each iteration a n

recorded. The p

In turn the remaining elements of the matrix a r e

reduced, f i rs t the ones off the pivot row and column,

and then the ones on the pivot row or column. After

n iterations this pivotal reduction i s complete. De-
pending on the final values of the pivot switches,
rows and columns of the new matrix are interchanged.

The final result i s the inverse of the original matrix.

Execution of the 'INVert' COMMAND s tar t s at

point MF] . Fi r s t a BRM 'COPY1 i s exe-

cuted to transfer the matrix VARIABLE indicated
by the ARGUMENT to the standard output
VARIABLE. Next the row pivot switches,
{W, I } {W, 18) and the column pivot switches
{W, 11). {W, 2pl) a r e initialized to zero. l8 A

loop index counter {Qt2} is initialized to zero.
Execution now ar r ives a t point .

The main loop is entered at this point.
constitutes the dimension of the matrix: the loop

is thus iterated { K t l } times.

each iteration {Qt2} a r e incremented by one and

{Q} set equal to 8.8.
matrix in the standard output VARIABLE are

{ K t l }

At the start of

Now all the elements of

l 8 Here the W-TABLE is used to store integer numbers.

-88-

searched to find one of largest absolute value,
omitting from the search the ith row i f {W, i} # $
or the ith column i f {W, l#ti} # #. {KK} a r e
set equal to the row index of the element found,

and { K K t l } to the column index. The value of

the element found, the pivotal element, is stored

in Q .

If {Q} a r e less than about lfr7, then it i s assumed

that the matrix is singular and execution proceeds

via a 'YES' branch to point w.
'NO' branch is executed and the pivot reduction

process continued.

Otherwise a

The elements of the matrix a r e now reduced.

First the pivotal element OO(KK, K K t I) is itself

reduced by replacing i t with i ts reciprocal. The
new value is also stored in> Q t 7 . Then two pivot
switches a r e set: {W,{KK}) a r e set to { K K t l) ,
and { W , { K K t l) } to {KK) .

Next the elements off the pivot row o r column a r e
reduced.

where i # {KK} and j # { K K t l) , is subtracted
the product

From each element OO(i, j) in turn,

Lastly the elements in the pivot row and column

a r e reduced.

element, in row {KK} of the matrix is multiplied

by {Q+7} .
element, in column { K K t l) of the matr ix is multi-

plied by - {Qt7) .

Each element excluding the pivotal

Each element excluding the pivotal

-89-

A test is now made: i f {Qt2} # { K t l } , then more

iterations of the loop described are required and

execution proceeds via a 'NO' branch to point

m.
Conditional row and column changes of the matrix

in the standard output VARIABLE are now made.

Otherwise a 'YES' branch is taken.

Conditional row changes a r e made first .

a loop counter, a r e initialized to zero.
checking the row pivot switches i s now entered.

At each iteration the following process is carried

out. {Qt2} a r e incremented by one. A check i s

then made on { W, {Qt2}} . If the value is not
equal to {QtZ} a 'NO' branch is taken. Row

{Qt2} of 00 i s interchanged with row {W, {Qt2}} of

00, and switch {W, {QtZ}} with switch {W, {W, {QtZ}}}.

The test on {W,{Qt2}} is then repeated, and so on.

When {W,{Qt2}} becomes equal to {Qt2} a 'YES'
branch is taken. If {QtZ} # { K t l } , more row

and column interchanges may be required, and
a return is made back to the beginning of the loop.
If {Qt2} = { K t l } , all the necessary row inter-

changes have been made.

{Qt2},
A loop

The column changes follow exactly the same pattern.

On the conclusion of this process, the standard

output VARABLE contains the inverse of the
original matrix.
of the DIRECTIVE SUBPROCESSOR.

Execution returns to point 4

If the matrix is singular, execution a r r ives at point

-El . Message MS7 is output to the teletype:

MATRIX SINGULAR - RANK =

-90-

{Qt2} minus one are calculated and output,

followed by a carriage return and 2 line feeds.

{at?} are set equal to the number of elements

in the matrix, and execution a r r ives a t point

a.
standard output VARIABLE a r e set to zero, and

then execution returns to point 4 in the

DIRECTIVE SUBPROCESSOR.

All the elements of the matrix i n the

This concludes the description of the operation of the four COMMANDS

in the 'GROUP$' component group of the EXECUTIVE SUBPROCESSOR.

The component group uses three routines that have not already been

described, all BRM's . The BRM SQRT will not be described here,

since the same routine is used in the SDS 940 FORTRAN LIBRARY.

Slight differences in the two versions can be accounted for by
inspection. The remaining two BRM's a r e described below.

BRM 'FIX' (Flow Diagram 38.)

The BRM

dimensions of the standard output VARLAB LE in
the DIM-TABLE . The call sequence is:

'FIX' is a routine for adjusting the

BRM F I X
[return location]
ZRO [address of location containing
ZRO [address of location containing

row dimension]
column dimension]

Both at entry and exit all regis ters contain garbage.

Operation of the BRM is as follows.

dimension i s obtained from its addressed location and

placed i n 0506{IDIM, -68) .

First the row

The column dimension

-91 -

is then obtained from i ts addressed location and

placed i n 0708(IDIM, -68) .
BRM is then taken.

The exit from the

BRM 'COPY' (Flow Diagram 3 1 .)

The BRM

contents of BLOCKS of storage i n and out of the

S-TABLE, o r for moving them to a new BLOCK
of storage of the same size.

'COPY' is a routine for moving the

Its call sequence is:

BRM COPY
[return location]
ZRO [address of location containing row dimension]
ZRO [address of location containing columndimension]
ZRO [address of location containing old BLOCK INDEX]
ZRO [address of location containing new BLOCK INDEX]

Both at entry and a t exit all registers contain garbage.

Operation of the BRM is as follows. F i r s t the row

and column dimensions a r e obtained, and the number

of elements in the matrix calculated. Then elements

of the matrix are taken from the old BLOCK in turn

and inserted in the new BLOCK in the S-TABLE .

If both BLOCKS a r e in the S-TABLE this process

is straightforward.
to copy the values of a matrix from outside the S-TABLE

into the S-TABLE, say from the W-TABLE into the

S-TABLE, the old BLOCK INDEX must be calculated

in some way.

S-TABLE is imagined to be extended in the core so that

it overlaps the core area designated to the W-TABLE .
The BLOCK INDEX is then the INDEX in the expanded

If, however, the BRM is used

For the purposes of this calculation the

-92-

S-TABLE of the zeroth WORD of the W-TABLE.

Thus i t is of crucial importance in any rearrange-

ment of the MAP processor not to change the

relative positions of the temporary storage TABLES

and the S-TABLE in the core by changing the

ARPAS coding involving the definition of the
TABLES.

On the completion of the transfer of the elements of

the matrix, the exit from the BRM i s taken.

NEGate

NUL1 (Flow Diagram 32.)

The 'GROUPl' component group of the EXECUTIVE

SUBPROCESSOR comprises two single-ARGUMENT

COMMANDS ; 'NEGate' , where the result is placed

in the standard output VARIABLE ; and 'NUL1 I .

On entry a preliminary section of coding commsn to

either of the COMMANDS is executed.

transfer is then made to further sections of coding

dealing separately with each individual COMMAND.

A secondary

Operation is as follows.
the secondary transfer index number is unloaded

and stored. A BRM 'LAB' is executed to check

the type of the ARGUMENT associated with the

COMMAND. If the ARGUMENT is LABEL-type,
the 'BAD' exit is taken to point a in the 'EDIT'
component group.

type, the 'GOOD' exit is taken from the BRM.

On entry at point MG-~

If the ARGUMENT is VARIABLE-

Next a POP 'UNLO' is executed to unload the dimen-

sions of the VARIABLE and its BLOCK INDEX in

-93-

the S-TABLE from the IDIM-TABLE. The total

number of elements in the VARIABLE is calcu-

lated and stored.

made.
The secondary transfer i s then

NEGate The 'NEGate' COMMAND is used to form the
negative of a matrix. The result is placed in the

standard output VARIABLE .
a t point . A BRM 'FIX' i s executed
to adjust the dimensions of the standard output

VARYLBLE in the IDIM-TABLE to the same as

those of the ARGUMENT.

Execution s tar ts

Each element of the standard output VARIABLE

is in turn set equal to the negative of the cor re-
sponding element of the ARGUMENT

A branch to point 4 in the DIRECTIVE
SUBPROCESSOR is then made.

VARIABLE.

NUL1 The 'NUL1' COMMAND is used to set the value

of any matrix VARYLBLE identically to zero.

Execution s tar ts a t point . Each element
of the matrix specified in the ARGUMENT is set
equal to $. $ in turn. A branch back to point 4
in the DIRECTIVE SUBPROCESSOR is then made.

ADD
SUB t rac t

SKIP

EQUate (Flow Diagram 33.)

The 'GROUP2' component group of the EXECUTIVE

SUBPROCESSOR comprises four double -ARGUMENT

COMMANDS. The first two, 'ADD' and 'SUBtract'

-94-

a r e operations where the result is placed in the

standard output VARIABLE.

'SKIP I never us e s the standard output VARIAB LE
and is a flow-changing operation.

COMMAND, 'EQUateI, one of the ARGUMENTS

is an output VARIABLE.
VARIABLE is only used i f it appears a s an

ARGUMENT,

The third COMMAND,

In the last

The standard output

Operation of this component group is more unortho-

dox than the others because the secondary transfer
occurs inside the loop iterating through the elements

of the input matrices.

Operation is as follows.
the secondary transfer index number is unloaded

and stored. A BRM 'LAB' is executed to check

the types of the ARGUMENTS associated with the

COMMAND.

the 'BAD' exit is taken to point 4 in the 'EDIT'

component group. If the ARGUMENT is VARIABLE-

type, the 'GOOD' exit is taken from the BRM.

On entry at point HGE$

If the ARGUMENTS a r e LABEL-type,

Next two POP'S 'UNLO' in succession a r e executed.

In turn for the f i rs t and second ARGUMENTS

respectively, these unload the dimensions of the

VARIABLE ARGUMENT and the BLOCK INDEX
i n the S-TABLE from the DIM-TABLE. Several
tes ts are now made to ensure compatibility of the
ARGUMENTS.

If the COMMAND is not 'EQUate' a 'NO' branch
is taken to point . If it is 'EQUateI but
the first ARGUMENT is not the standard output

-95-

VARIABLE, a 'NO' branch is again taken to
point . If the COMMAND is 'EQUate'

and the first ARGUMENT is the standard output

VARIABLE a 'YES' branch is taken to point
. At point i f either the row

dimensions or the column dimensions of each

ARGUMENT a r e not the same, a 'NO' branch
is taken to point a in the 'Append' component

of the EXECUTIVE SUBPROCESSOR.

If the row and column dimensions both match each
other, t hena 'YES' branchis taken. If the

COMMAND being executed i s either 'ADD' o r

'SUBtract' a further 'YES' branch is taken to

point . Otherwise a 'NO' branch is taken
to point +-@j .

At point a BRM 'FIX' is executed to adjust

the dimensions of the standard output VARIABLE
in the IDIM-TABLE to those of the ARGUMENTS.

Execution then proceeds to point m. At point

the total number of elements in each
matrix VARIABLE is calculated, execution then

arriving at point xi .

At this point the matrix operation itself is executed.
If the COMMAND is 'ADD', 'SUBtract', o r 'EQUate',

the indicated operation is carried out in turn on each

element. If the COMMAND is 'SKIP', {INDEX} a r e

incremented by one i f the value of the first ARGUMENT

is less than or equal to the value of the second.

this last COMMAND i f the ARGUMENTS a r e not

scalar a branch to point 4 in the 'APPend' com-
ponent is made.

In

-96-

Finally on the

SUBPROCESS0

MU Lt iply

SCAlar multiply

TRAns po s e (Flow Diagram 34.)

The 'GROUP3' component group of the EXECUTIVE
SUBPROCESSOR comprises two double-ARGUMENT

COMMANDS 'MULtiply' and 'SCAlar multiply'

and one single -ARGUMENT COMMAND 'TRAnspose

In all cases the result is placed in the standard

output VARIABLE.

of coding common to each of the COMMANDS is
executed. A secondary transfer is then made to
further sections of coding dealing separately with

each individual COMMAND.

On entry a preliminary section

Operation is as follows.

the secondary transfer index number is unloaded

and stored. A BRM 'LAB' is executed to check

the type of the ARGUMENTS.
are LABEL-type, the 'BAD' exit is taken to point a in the 'EDIT' component group.

ARGUMENTS are VARIABLE-type the 'GOOD'
exit is taken from the BRM .

On entry at point HGZE~

If the ARGUMENTS

If the

Next, two POP'S

In turn for the

'UNLO' are executed in succession.

these unload the dimensions of the

n t h e S-TABLE

from the DIM-TABLE .
then made.

The secondary transfer is

-97-

TRAnspose The 'TRAnspose' COMMAND is used to find the

transpose of a matrix.

the standard output VARLABLE . Execution s tar ts

at point MG) . A BRM 'FIX' i s executed to

adjust the row dimension of the standard output

VARIABLE to the same as the column dimension
of the ARGUMENT and vice versa.

The result i s placed in

By means of a double loop the elements of the matrix
ARGUMENT are copied into the W-TABLE , trans-

posing i n the process. A BRM 'COPY' is then

executed to shift the contents of the W-TABLE into

the standard output VARLABLE .
point a of the DIRECTIVE SUBPROCESSOR is

then made.

A branch back to

MU L tiply The 'MULtiply' COMMAND i s used to find the
matrix product of two matrices. The result is

placed in the standard output VARIABLE,

tion starts at point MEL) .
made: i f the row dimension of the f i rs t ARGUMENT
is not equal in value to the column dimension of the
second ARGUMENT, then a 'NO' branch is taken
to point a of the 'APPend' component.

Execu-

First a check is

Otherwise

execution continues.

Next a BRM' 'FIX' is execilted adjusting the column
dimension of the standard output VARIABLE to the

same value as the column dimension of the f i r s t

ARGUMENT, and the row dimension of the standard

output VARIABLE to the same value as the row

dimension of the second ARGUMENT.

-98-

The matr ix product is now calcula
element in the usual way; the

in the W-TABLE Final lya BRM 'COP

used to transfer the result to the standard output

VARIABLE , and a branch is made back to point
4 i n the DIRECTIVE SUBPROCESSOR.

sult being placed

SCAlar multiply The 'SCAlar multiply' COMMAND is used to

find the product of a scalar and a matrix.

result is placed i n the standard output VARIABLE.

Execution starts at point HE].
dimensions of the first ARGUMENT a r e checked.
If i t is found not to be a scalar, a 'NO' branch is

taken to point a i n the 'APPend' component.

The

F i rs t the

If it is a scalar, a 'YES' branch is taken and a
BRM 'FIX' is executed to set the dimensions of

the standard output VARIABLE the same as those

of the second ARGUMENT. The value of the first

ARGUMENT is then copied into temporary storage.

Each of the elements of the second ARGUMENT in

turn a r e multiplied by the first ARGUMENT and
the results stored i n the corresponding elements

of the standard output VARIABLE. Execution then

returns to point a of the DIRECTIVE SUBPRO-

CESSOR .

REAd

PRIM
LOAd

STOre {Flow Diagram 35.)

The 'GROUP4' component group of the EXECUTIVE

SUBPROCESSOR is the last group to be described.

-99-

REAd

It comprises four single-ARGUMENT COMMANDS :
'REAd', 'PRInt', 'LOAd', and 'STOre'. The first

two a r e concerned with input and output of the values

of MAP VARIABLES via the teletype, and the

second two with input from and output to a disk

file. On entry a preliminary section of coding
common to each of the COMMANDS i s executed.
A secondary transfer is then made to further

sections of coding dealing separately with each

individual COMMAND.

Operation is as follows.

M G F 4
i s unloaded and stored. A BRM 'LAB' i s
executed to check the type of the ARGUMENT

associated with the COMMAND. If the ARGUMENT

i s LABEL-type, the 'BAD' exit is taken to point a in the 'EDIT' component group.
ARGUMENT is VARIABLE-type, the 'GOOD'

exit is taken from the BRM.

On entry at the point

the secondary transfer index number

If the

Next a POP 'UNLO' i s executed to unload the

dimensions and the BLOCK INDEX in the S-TABLE

of the VARIABLE ARGUMENT in the DIM-TABLE .
The total number of elements in the VARIABLE is

calculated and stored, and the secondary transfer

made.

The 'REAd' COMMAND is used to input the values
of a VARIABLE from the teletype. Execution starts

a t the point HE] .
proceeds row by row.

Input of VARIABLE values

Input of each row corresponds

to one iteration round the loop to be described.

-100-

First the row

the teletype. Y

s ta r t of an in
for every value input by the user. At the start
of this loop the INDEX of the WORD in the

S-TABLE where the number input is to be stored

is obtained. A BRM 'IONUM' is then used to

input the number from the teletype. If the number

is unintelligible, the 'BAD' exit is' taken from the

BRM to point M.
exit is taken, and the number and its terminating

character a r e stored.

Otherwise the 'GOOD'

Several tests a r e now made. If the end of the row
has been reached the terminating character should

be a carriage return.

ar isen and execution proceeds to point

If the terminating character is a carriage return,
a 'YES' branch is taken. A line feed is output

to the teletype, and a check made to see i f all
elements of the matrix have been read in.

they have execution returns to point 4 in the

DIRECTIVE SUBPROCESSOR. If they have not

execution returns to point Hz] ready for
the input of a new row.

If it is not an e r r o r has
.

If

If the end of the current row has not been reached,
the terminating character should be either a l'space"

or a line feed.

and execution proceeds to point If the

terminating character is a ''space

If it is neither an e r r o r has arisen,

execution pro-

for the input

w. If it is a line feed,

teletype before

proceeding back to point .
-101-

PRInt

the e r r o r i

A line feed is output to the teletype, and the loop

indexing reset so that the next row input by the
user is input as a repetition of the row

the e r r o r occurred. Finally a BRM 'ER1' is

executed to print out an ERROR MESSAGE, and

execution returns to point +-(R-] .

The 'PRInt' COMMAND is used to output to the

teletype the values of a VARIABLE. Execution

starts at the point HK].
VARIABLES proceeds row by row.

Output of the
Output of

each row corresponds to one iteration round the

loop to be described.

F i r s t a row index is initialized, and execution

a r r ives at point , the start of an inner
loop iterated once for every number output to the
teletype.

string a r e reset .

of the WORD to be output is obtained, and the value
taken from the TABLE. The latter is converted to
character code form and stored i n the temporary

The pointers of a temporary storage

The INDEX in the S-TABLE

"E" denoting the

-102-

STQre

branch'is taken, and execution returns to point

for output of the next r. If the end
of the row has been reached a

taken.

the elements of the row have been output, and all

the exponent parts have been temporarily stored.

At this point the fractional parts of all

The exponent parts for the row a r e now output

a s follows.

output to the teletype.
row in turn, the processor outputs to the teletype
three "spaces It, "E'", and the appropriate exponent

part.

output to the teletype.
current row of the matrix VARIABLE have now

been fully output.

A carriage return and line feed a r e

For each element in the

Two cair iage returns and a line feed a r e

All the elements of the

If all the elements of the VARUBLE have been
output, a 'YES' branch i s now taken to point 4
of the DIRECTIVE SUBPROCESSQR . If not a
'NO' branch is taken and execution returns to point

HE] to output the next row.

The 'STOre' COMMAND is used to store the values

of a VARIABLE on a disk file. Only one VARIABLE
is stored on any one file. Execution starts a t point

. On entry a BRM 'OUTF' is executed to
make a disk file ready for output.
attempt fails, the 'BAD' exit is taken. A BRM 'ER1'
is executed to print out an ERROR MESSAGE and

BRM IOUTF' re-entered. If the file is successfully

made ready, the 'GOOD' exit is taken from the BRM.
The file identifying WORD 314631468, the number of

If the user 's

-103-

LOAd

elements in th

column

written on the file.

Each of the elements of the matrix VARIABLE
a r e now written on the file in turn, row by row.

The file is then closed and a branch made back
to point a of the DIRECTIVE SUBPROCESSOR.

The 'LOAd' COMMAND is used to load the values

of a VARIABLE from a disk file. The COMMAND

is complementary to the 'STOre' COMMAND.
Execution starts a t point Hx) .
BRM

for input.
fails, the 'BAD' exit is taken. A BRM 'ER1'

is executed to output a n ERROR MESSAGE to the

teletype, and BRM 'INF' re-entered. If the file
is successfully made ready, the 'GOOD' exit i s
takenfrom the BRM.

On entry a

'INF' is executed to make ready the disk file

If the user 's attempt to specify a file

Next, three tests a r e made in succession. If the
first file WORD is not the correct identifier; or

i f the second file WORD does not match the
number of elements of the VARIABLE to be given

values; or i f the third file WORD does not match
the number of columns of that VARIABLE then a

'NO' branch is taken.

BRM 'ER1 executed to output a n ERROR MESSAGE,
and execution returned to point

a new file.

The file is closed, a

to specify

file are all correct,

is taken. The values of the elements

-104-

are read in one by on the file into the
specified PO i n t h e S-TABL T

is then close ion returns to point
of the DIRECTIVE SUBPROCESSOR.

Only one routine is used by the 'CROUP4' component group which
has not already been described.

BRM 'IONUM'

The BRM 'IONUM' is used to input a floating-

point number from the teletype to the A and B

registers.
to the BRS 52 and so will not be described
here. It was used solely because BRS 52 was

not in working order when the MAP processor

was developed.

It is identical in form and operation

The call sequence is as follows:

BRM IONUM
[er ror return]

On entry all regis ters contain garbage.

the A and B regis ters contain the number input,

and the X register contains the character with

which the user terminated input of the number.

At exit

This concludes the description of the components of the processor
comprising the EXECUTIVE SUBPROC SSOR. It is also the end

of the description of the entire processor.

to identify in a symbolic listing of the processor, the purpose and
operation of a

It should now be possible '

-105-

Flow Diagram 9. Flowchart of VARiables operation for
adding t o the LIST of VARIABLES

CALL SEQUENCE:

BRM STAR
EXIT1 return locatbd
EXIT2 re turn !oc&io~

AT EXIT2:

1B3,fT) WORD o f Three characters

{A) 3rd character

€4 ld

Flow Diagram 10. Flowchart of BRM STAR for checking f i rst
WORD of an EDIT mode expression

(F)

CALL SEQUENCE;
BRM DIMS
b D return locdtiorj
EO00 return iocatiofj

AT ENTRY:
terminating character after VARIABLE name

CB),(X) garbage

AT EXIT:

@],{xJ garbage
ERROR reference number or garbage

0 GOOD EXIT
I

(BAD EXIT

Flow Diagram 11. Flowchart of BRM 'DIMS' for input and
coding t h e dimensions of d VARIABLE

CALL SEQUENCE:

BRM LIS1
[return iocation]

Flow Diagram 12. I Flowchart of calling sequence

IT Flowchart o f BRM LIS1 for printing d
PROGRAM on the teletype

CALL SEQUENCE :

UNLO [dddf. of s t o r i n g location]

AT ENTRY:

{AI, C83 garbage
(XI INDEX o f WORD of IOlM-TABLE

t o be unloaded

Flow Didgram 13 Flowchart o f POP 'UNLO' for unloading
d WORD f roh t h e IDIM-TABLE

ENTRY a

I L RBEL - & ypm,

EXIT2 1 EXIT1

CALL SEQUENCE:

BRM PGRM
[EXIT1 re turn locatio4
[EXIT2 r e t u r n location]
ZRO [address of JNDEX

location]

AT EXIT:

{AI, lB),hl garbage

Flow Diagram 15. Flowchart o f BRM PGRM coding an INDIRECT
STATEMENT into specified WORDS of INSTR-
and PTR -TABLES.

‘NO’

I BRM LOOK I

h

Flow Diagram 16. Flowchert o f INSert , BRAnch, DELete, and COMment operations.

y l o . ,

Flow Diagram 17. Flowchart of PROgram operation printing on
the teletype d PROGRAM of INDIRECT STATEMENTS

Flow Diagram 18. Flowchart of SAVe operation for storing d
PR and i t s associated COMMENTS and
VA LIST on a dis

CALL SEQUENCE

BRM OUTF
E e turn oca ,ariJ

Flow Diagram 19. Flowchart of f3RM OUTF readying d
disc file fo r output

Flow Diegram 20. Flowchart o f REStore operation fo r
restoring d PROGRAM t o core from d
disc file.

CALL SEQUENCE;

BRM INF
b e turn ~ocation]

Flow Didgrdtn 21. Flowchart o f BRM INF reddying d
disc file for input.

Flow Diagram 22. Flowchart o f POP’S FLDX and FCAX
for getting INDICES in TYPE IU TABLES.

CALL SEQUENCE :

CALC [xldress of location
containing cotutnn size]

AT ENTRY :
{A) row index number
{B) column index number

AT EXIT:

{A) INDEX in S-TABLE

@I garbage
{X I not used

Flow Diagram 23. Flowchart of POP CALC fo r computing
the re la t ive INDEX in d BLOCK f r o m t h e
r o w and column indices of the tndtrix.

i

Flow Diagram 24. Flowchart o f OMIT operation deleting d
VARIABLE from the VARIABLE LIST.

CHECKNUVIBER

CT +33

CALL SEQUENCE :

BRM LAB
ke tu rn location]

Flow Diagram 25. Flowchert for BRM L A B checking t h e
type of ARGUMENTS of d STATEMENT

(- ENTRY

V

[POP UNLO 1

'RPP' c o m p o n r n t

Flow Didgram 26. Flowchart of GROUP6 Operations
EIGenvalue, QETerminant, INVer t,
and DlAgonal sum.

Flow Didgrab 27. Flowchart of 'DETerminant' cotnponent for
calculating t h e determinant of d VARIABLE.

’0

0
I

-- I

&l
1= +

1 I

I A 1

Flow Diagram 29. Flowchart o f 'INVert' operat ion for
inver t ing a square matr ix.

P

CALL SEQUENCE:

BRM FIX
keturn ~ocation]
ZRO [addr. of location containing row size]
ZRO kddr. o f location contdrning coluhn size]

AT ENTRY:

CAI, (83, [XI garbage

Flow Didgrab 30. Flowchart of BRM FIX adjusting t h e
dihensions of The standard o u t p u t
VARIABLE.

'i
1 c EXIT 1

CALL SEQUENCE:

BRM COPY
ketum ~ocation]
ZRO Fddc of location containing row sizq
ZRO kddr. o f location containing column size]
ZRO kddr, of location containq old starting INDEX]
ZRO @dr: of location containing new starting lNDEq

Flow D i a g r a m 31. Flowchart of 3RM COPY copying d
tndtrix into d new position in t h e
5-TABLE .

ENTRY

x
Flow Diagram 32. Flowchart of GROUP1 operations

NULI, NEGate.

Flow Oidgrdm 33. Flowchart of GROUP2 operetions ADD.
SUBtrect, SKlp and EQUate.

ENTRY 9,

Flow Diagram 34. F l o w c h a r t of GROUP3 operations
MULt ip ly , S C A l d r lnultiply and TRAnspose.

w

P
9

"6

A

+- a

L

3
0
ii

1 I

AS IT STANDS, MAP language is incompatible with any other

SDS 940 facility.

modifications to the structure of the MAP processor a r e made,

o r i f special interlinking routines a r e constructed.

Areas of compatibility can only a r i s e i f either

As an example, it is possible by means of such a routine to create

compatible disk files to transfer numerical values of matrices to
MAP. An assembly language routine is given below, which may

be called by a Fortran program to create a disk file usable by M A P .
The routine is merely an adaptation of the 'STOre' component of

MAP'S EXECUTIVE SUBPROCESSOR. The subroutine call is

CALL STORE(A, M, N)

where

A i s the matrix to be stored

M is the row dimension

N is the column dimension

19
The coding for the routine i s as follows:

$STORE ZRO RTN
STX TX
LDA* 4$4B calculate number of elements
STA T t 1 in matr ix
MUL* 4$3B
RSH 1
STB T
LDA =MG1
LDB , =-1 output to teletype FILE NAME
LDX =I
BRS 34
CLA
BRS 18 input file name

The operation of this subroutine is not guaranteed.

-137-

cont 'd
BRU * t8
LDX =3
BRS 19
BRU * t5
STA T t 2
LDA =66552B
WIO = 1
BRU S1
LDA =MG2
LDB =-1
LDX =1
BRS 34
BRU STOREt7

MG1 ASC '$FILE NAME/'
MG2 ASC '$$WHAT?$$/'
S1 LDA =31463146B

WIO T t2
LDP T
WIO T t2
CBA
WIO T t2
LDA LNK
ADD 4$2B
STA * t8
CLA
STA T t 3
MIN T t 3
LDA T t 3
CLB
LSH 1
CAX
ZRO
WIO T t 2
CBA
WIO Tf2
LDA T t 3
SKE T
BRU S l t l l
LDA Tt2
BRS 2$
LDX TX
BRR RTN

LNK LDP $,2
T BSS 4
TX ZRO
RTN ZRO

open file

come here i f file is bad
output to teletype WHAT?

go get a new file

come here i f file good,
put on file: identifier,
number of elements, number
of columns

inser t element loading in-

beginning of loop
struction

calculate index of element

put element of matr ix on file

end of loop

close file

return

storage

If the filename is to be provided by the calling sequence instead of input

from the teletype, the routine would be slightly more complicated.

-138-

It can be seen that the provision of linking routines need not neces-

sari ly be too difficult a task. More complex forms of iteration

between MAP and other facilities, such as the automatic entry

of MAP for the execution of certain operations, during the course

of execution of some other program, a r e not feasible.

8. CHANGING THE LIMITS 0 STORAGE SPACE

DUE TO THE MANNER in which INDICES are stored in the

WORDS of TABLES, it is in general not possible to enlarge the
TABLES of MAP.

publication, only the CTAB-TABLE and the ICOM- and

PLACE-TABLES can be extended.
COMMENTS and the number of COMMANDS can be increased.

As the processar stands at the time of

Thus only the number of

If other machines i n which less storage space is available a r e

used, then either o r both the CTAB- and S-TABLE would be
reduced in size.

It is also possible to increase the maximum permissible dimen-

sions of MAP matrices.
not recommended on the grounds that the processing of large
matr ices on the SDS 940 i s uneconomical.

This is more’ difficult, however, and

COMMENTS

To change the number of COMMENTS it is only

necessary to redefine the size of the CTAB-TABLE ,
and to set {EPJDSt3} equal to three times the new

number of WORDS in the TABLE minus 73.

-1 39-

VARIABLE STORAGE

To decrease the VARIABLE STORAGE space it
is necessary to redefine the length of the S-TABLE .
Let the new number of locations be n : n - 2 must then

be divisible by 2$.

(n - 2)/2 and (ENDS-I-2) to (n - 2)/2 4- 8 .

{ENDS) a r e set equal to

NUMBER O F COMMANDS

If it is desired to make available new COMMANDS

the ICOM- and PLACE-TABLES must be extended,

placing the new COMMAND character codes in the
ICOM-TABLE anp their transfer locations in the

PLACE-TABLE . In addition in the BRM 'INPUT',

the BRM 'LOOK' used to search the ICOM-TABLE

for the COMMAND input by the user, must have its
call sequence changed. If n COMMANDS a r e added

then the call sequence should become

BRM LOOK
ZRO =77777777B
ZRO =[insert value of -(3$tn)]
ZRO ICOM

The placing of the sections of coding dealing with
the new COMMANDS is not important, except that

i f they make use of user-defined POP'S, the coding

must be inserted after the POP definitions.

-140-

APPENDIX A1

THE FOLLOWING IS a list of the BRS's and SYSPOPS used in

the MAP processor.

with descriptions of their operation may be found in [3].

A full list of all available system routines

BRS's

1 5

16
17

18

19

2pl
21

34
36

38
51

53

78

read input filename
open input file

close all files

read output filename

open output file
close file

floating -point ne gate
output string

output number

input number
fixed to floating conversion
output floating-point number

arm interrupt

SYSPOPS

FAD floating -point add

FDV floating-point divide

F M P floating-point multiply
FSB floating -point subtract

GCI get character and increment
20

ISC internal to string conversion (floating-point output)

2o In the symbolic listings of the processor program the SYSPOP
'ISC' appears as the SYSPOP 'SIC'.
Harvard University SDS 940 ARPAS assembler 'ISC' assembles
as 'SIC' and vice-versa.

Due to an e r r o r in the

-141-

LDP
STP
TCI teletype character input

TCO teletype character output

WCI write character and increment

w IO word input and output

load pointers (or floating-point number)

store pointers (or floating-point number)

-142-

APPENDIX

THE FOLLOWING IS a list of all messages output by the MAP

processor to the teletype.

MESSAGES with their reference numbers.
It includes a list of all ERROR

E r r o r Messages

Reference number message

1
2

3

4
5
6
7

8

9

18

Other Messages

MS 1

MS2
MS3

MS4
MS5

MS6

MS7

MS8

MSl$

MSl1

@@NO MORE STATEMENTS @@

@@TOO MANY VARIABLES 88
@@JARIABLE UNDEFINED @@

@@VARIABLE STORE FULL @@
@@ILLEGAL VARIABLE 88
@@MATRIX IS OVERSIZE @@
@@LABEL UNDEFINED 88
@@INCOMPATIBLE MATRIX @@
@@WHAT? @@
@@COMMENT STORE F U L L @@

@@MATRIX MANIPULATOR (1 l a - 3) MAY 1968 @@
@COMPLEX EIGENVALUE
@REAL EIGENVALUE

@DETERMINANT ZERO @@
FILE NAME

@@STOP IN STATEMENT

@MATRIX SINGULAR - RANK =

@COMPUTATION FAILURE @@
@VARIABLES USED@@
@REDIMENSION VARIABLES? @@

In the above messages @ denotes a carr iage return and line feed.

-143-

COMMAND Page

ADD

APPend
B RAnc h

COMment

DELete

DETerminant

DIAgonal s u m

EIGe nva lue

EQUate

INSert
INVert

LISt

LOAd
MULtiply
NEGate

NUL1

OMIt
PRInt

PROgram

REAd

REStore

SAVe

SCAlar multiply

SKIP

STOre
SUB tract

TRAnspose

VARiable s

matrix addition

append INDIRECT STATEMENTS

branch to INDIRECT STATEMENT

attach COMMENT

delete INDIRECT STATEMENTS
determinant of a matrix

t race of a matrix

eigenvalues and vectors of a matrix

equate two matr ices

insert INDIRECT STATEMENTS
invert a matrix

output VARIABLE LIST to teletype

load matr ix from a disk file
matrix multiplication

negate a matrix
se t null matrix

omit VARIABLE from LIST

output matr ix to, teletype

output PROGRAM to teletype

read matrix from teletype

read PROGRAM from disk file

output PROGRAM to disk file

scalar multiplication

conditionally skip a STATEMENT

output matrix to disk file
matrix subtraction

transpose matr ix

a d d t o LIST of VARIABLES

94
47

50

50

50

71

71
71

94
50

71

45

99

97
93

93
69

99
55

99
60
58

97

94

99

94
97

39

-145-

REFERENCES

P. M. Newbold. "M.A.P. - A Conversational Language for
Numerical Matrix Operations. Part I : User's Manual. If
Harvard University Technical Report TR561, May 1968.

B. W. Lampson, L. P. Deutsch, L. L. Barnes.
point System Manual. If Contract SD-185, Document No. 30 10 40,
University of California, February 1966.

'IFloating-

"SDS 940 Time sharing System Technical Manual. I t Scientific
Data Systems Publication 98 11 16A, November 1967.

"SDS 940 Computer Reference Manual. It Scientific Data
Systems Publication 90 06 40B, September 1967.

'!TAP Reference Manual for SDS 940 Time-sharing Computer
System.
October 1967.

Scientific Data Systems Publication 90 11 17A,

B. W. Lampson, L. P. Deutsch, L. L. Barnes.
Timesharing String Process System Reference Manual.
Contract SD-185, Document No. 30 10 20, March 1966.

Y3.P.S.

W. Jennings. 'First Course i n Numerical Methods. Sections
5. 3, 5.4 and 22. 5. Macmillan, N. Y . 1964.

-147-

Unclassified
Security Classification

I DOCUMENTCONTROLDATA-R&D
,Scciirrty c l a s s i f i r a t r o n of t i t l e , body o f abs trac t arid indexing annotation nrust be entered when the overall report is r l n s s i f i e d)

1 O R I G I N A T I N G A C T I V I T Y (Corporate author) 20. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

Division of Engineering and Applied Physics

Cambridge, Mas sac hus ett s

THE MATRIX ALGEBRA PROGRAM - A CONVERSATIONAL LANGUAGE FOR
NUMERICAL MATRIX OPERATIONS - PART 11: REFERENCE MANUAL

Unclassified
Harvard University 26. G R O U P

3 R E P O R T T I T L E

4. PESCRIPTIVE NOTES (T y p e ofreport and.inc1usive d a t e s)

Interim Technical Report
5 AuTHoR(S) (First name, middle init ial , l a s t name)

7 6 . NO. O F R E F S 7 8 . T O T A L NO. O F P A G E S

I p- Newbold

6. R E P O R T D A T E

June 1968 150 7
ea. C O N T R A C T O R G R A N T NO. 98. O R I G I N A T O R ' S R E P O R T NUMBERIS)

NO 0 0 1 4 - 6 7 -A- 0 2 98 - 0 00 6 and
b. P R O J E C T NO NASA NGR 22-007-068 Technical Report No. 562

C . 9b. O T H E R R E P O R T N O G) (Any other numbers that may be a s s i g n e d
th is report)

I d.

10 D I S T R I B U T I O N S T A T E M E N T

This document has been approved for public
release and sale; its distribution is unlimited.

Office of Naval Research

This report is Part I1 of a two-part description of a new programming
language MAP.
for direct-access time-sharing computer systems.
numerical matrix operations with the same ease and flexibility as scalar
operations. No knowledge of any other language is required.

The language is in a conversational mode, created expressly
It is designed to execute

Part I1 is the Reference Manual for the language.

L I N K A

R O L E Wl

L I N K 8

Numerical matr ix operations

Unclassified
A - 3 1 4 0 9 Security Classification

D D FNooRvM6 1 4 7 3 (BACK
S / N 0 1 0 1 - 8 0 7 - 6 5 7 1

-
? O L E -

L I N K C -
? O L E -

